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Abstract Given a k × n integer primitive matrix A (i.e., a matrix can be extended to an n × n

unimodular matrix over the integers) with the maximal absolute value of entries ‖A‖ bounded by an

integer λ from above, the authors study the probability that the m × n matrix extended from A by

appending other m−k row vectors of dimension n with entries chosen randomly and independently from

the uniform distribution over {0, 1, · · · , λ − 1} is still primitive. The authors present a complete and

rigorous proof of a lower bound on the probability, which is at least a constant for fixed m in the range

[k + 1, n − 4]. As an application, the authors prove that there exists a fast Las Vegas algorithm that

completes a k×n primitive matrix A to an n×n unimodular matrix within expected ˜O(nω log ‖A‖) bit

operations, where ˜O is big-O but without log factors, ω is the exponent on the arithmetic operations

of matrix multiplication.

Keywords Integer matrix, matrix completion, probabilistic algorithm, unimodular matrix.
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1 Introduction

A vector x ∈ Z
n is called primitive if x = dy for y ∈ Z

n and d ∈ Z implies d = ±1. More
generally, a matrix A ∈ Z

k×n with k ≤ n is called primitive if x = yA ∈ Z
n for y ∈ Q

k

implies y ∈ Z
k; in this case we also say the k rows of A are primitive in Z

n. In particular,
an n × n primitive matrix over Z is also called unimodular, i.e., an integer square matrix with
determinant ±1. It can be proven that a k × n primitive matrix can always be extended to an
n × n unimodular matrix over Z; see, e.g., [1].

Given a primitive matrix A ∈ Z
k×n with ‖A‖ := maxi,j |ai,j | bounded by an integer λ from

above, our focus in this paper will be on the probability of that the m × n matrix extended
from A by appending other m − k vectors of dimension n with entries chosen randomly and
independently from the uniform distribution over Λ := Z ∩ [0, λ) is still primitive.

1.1 Main Results

In particular, we prove the following theorem.

Theorem 1.1 Given a primitive matrix A ∈ Z
k×n with ‖A‖ bounded by an integer λ

from above and an integer s with 0 ≤ s ≤ n−k−2, let B ∈ Z
(n−s−1)×n be a matrix with first k

rows copied from A and entries of the other rows chosen randomly and independently from the
uniform distribution over Λ. Then the probability of the event that B is primitive is at least

1 − 4
(

2
3

)s+1
(

1 −
(

2
3

)n−k−s−1
)

− 2(n − s)2

λs+2

(

1 − 1
λn−k−s−1

)

. (1)

Note that Theorem 1.1 holds for k = 0 as well, which is the case of directly choosing n−s−1
vectors with entries from the uniform distribution over Λ. Roughly speaking, for this case, it
was shown by Maze, et al.[1] that when λ → ∞, the limit probability of that an (n− s− 1)× n

integer matrix with entries random chosen from the uniform distribution over Λ is primitive is
n
∏

j=s+2

1
ζ(j)

, (2)

where ζ(·) is the Riemann’s zeta function. In this sense, Theorem 1.1 gives an effective lower
bound on the probability for finite λ, and hence will be useful in practice, especially in computer
science.

From Equation (1), the parameter k plays a very limited role for the result. In fact, one
may easily obtain a simpler but worse bound:

1 − 4
(

2
3

)s+1

− 2(n − s)2

λs+2
. (3)

Note that this bound is independent of the parameter k. For example, if s = 3 is fixed and
λ ≥ 3(n−3)2/5, then the bound (3) implies that the resulting (n−4)×n matrix will be primitive
with a probability at least 0.2.

Moreover, if λ is large enough (with respect to n), this bound can be further simplified as

1 − (4 + δ)
(

2
3

)s+1

(4)
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for some 0 < δ < 1. Surprisingly, this oversimplified bound only depends on s.
For given k, n and λ, one can decide the smallest integer s ∈ [0, n − k − 2] such that the

lower bound given in Equation (1) is a usable bound, i.e., between 0 and 1. For instance, s

should be at least 3 for 4
(

2
3

)s+1
< 1.

We remark that when s = n − k − 2 the probability bound given in Theorem 1.1 matches
the empirical probability well according to our experiments in Section 4.

In addition, one may not further expect a constant probability for the case of s = −1 (that
corresponds to the resulting matrix is an n × n unimodular matrix), since the natural density
of random n × n unimodular matrices is 0; see [1, Lemma 5].

1.2 Implications

As an application of Theorem 1.1, we present a fast Las Vegas algorithm (Algorithm 2) that
efficiently completes a primitive matrix A ∈ Z

k×n to an n× n unimodular matrix U such that
‖U‖ ≤ nO(1)‖A‖. More specifically, we prove the following theorem.

Theorem 1.2 Given a primitive matrix A ∈ Z
k×n, there exists a Las Vegas algorithm

that completes A to an n × n unimodular matrix U such that ‖U‖ ≤ n8‖A‖ in an expected
number of O(nω+ε log1+ε ‖A‖) bit operations.

1.3 Techniques

The essential ingredient of our proof for Theorem 1.1 is adapted from [2, Section 6], which
was used to analyze the expected number of nontrivial invariant factors of a random integer
matrix. The main idea is to give an upper bound on the probability that the resulting (n− s−
1) × n matrix is not primitive. Based on the following lemma, the bound can be analyzed by
localizing at each prime p.

Lemma 1.3 A k × n integer matrix A is not primitive if and only if there exists at
least one prime number p such that the resulting matrix is not full rank over the finite field
Zp := Z/pZ.

In addition, the algorithm for unimodular matrix completion is based on the determinant
reduction technique, which was originally introduced by Storjohann in [3, Section 15] for com-
puting the determinant of a polynomial matrix, with a worked example for integer matrix
followed. More details about determinant reduction for integer matrices and an iterated usage
of this technique are given in [4, Section 13.2]. We give a full description of the algorithm for
the integer matrix case and present a detailed analysis in Section 3.

1.4 Related Work

Primitive and unimodular matrices have many applications in different areas. For ex-
ample, unimodular matrices can be applied to signal compression[5]; the lattice reduction
algorithms[6, 7] essentially produce a series of unimodular matrices (linear transformations)
to improve the basis quality of the given lattice.

In particular, generating a primitive or unimodular matrix with given rows or columns
happens quite often in practice. For instance, one may need to generate unimodular matrices
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with at least one column of all ones in linear programming for simplex pivoting. In the literature,
there exist many results on what conditions should be satisfied for that a partial integral matrix
can be completed to a unimodular matrix. In 1956, Reiner[8] proved that a row vector can be
completed to a unimodular matrix if and only if it is primitive. Zhan[9] proved that if n entries
of an n × n partial integral matrix are prescribed and these n entries do not constitute a row
or a column, then this matrix can be completed to a unimodular matrix. Fang[10] improved
Zhan’s result by proving that if an n × n partial integral matrix has 2n − 3 prescribed entries
and any n entries of these do not constitute a row or a column, then it can be completed to
a unimodular matrix. Duffner and Silva[11] gave necessary and sufficient conditions for the
existence of unimodular matrices with a prescribed submatrix over a ring that either is Hermite
and Dedekind finite or has stable range one.

For the probability analysis, Maze, et al.[1] analyzed the natural density of k × n primitive
matrices. Guo, et al.[12] extended Maze, et al.’s result to a more general setting, where the
natural density of k × n primitive matrices over all m × m (m ≥ max{k, n}) integer matrices
was considered. Note that the natural density can be interpreted as a limit probability, where
each matrix entry is randomly and independently chosen from a set with an upper bound but
the bound tends to infinity. However, a finite version is usually preferable in practice, e.g.,
algorithm analysis. Therefore, the result in Theorem 1.1 will be useful.

Additionally, a somewhat “dual” case is considered in [13], where the probability of that m

integeral vectors with bounded entries generate a same lattice of rank n was studied. In [13],
the ideal choice is m = n + 1, but a theoretical lower bound on the probability was only proven
for m ≥ 2n + 1. Aggarwal and Regev in [14] and Kirshanova, et al. in [15] considered a closely
related problem but the entries are randomly chosen from the discrete Gaussian distribution
over Z

n, where m is even larger.
For algorithms, Randall[16] presented an algorithm for generating random matrices over

a finite field with a given determinant, which naturally can be used to generate unimodular
matrices over finite fields. Kalaimani, et al.[17], Zhou and Labahn[18] discussed algorithms for
unimodular completion of polynomial matrices. The unimodular matrix completion algorithm
discussed in this paper works for integer matrices, which is more efficient than the standard
method for this problem (see Remarks 3.4 and 3.5).

Roadmap We prove Theorem 1.1 in Section 2. Combining the determinant reduction
technique for integer matrices with Theorem 1.1, we give a fast algorithm for the problem of
unimodular matrix completion in Section 3. In Section 4, we present an extensive experimental
study on the probability that the resulting (n− s− 1)×n matrix is primitive and discuss some
interesting problems for further study.

2 Proof of Theorem 1.1

Giving a primitive matrix A ∈ Z
k×n with k < n and ‖A‖ ≤ λ, we now consider to

extend A to an (n − s − 1) × n matrix by choosing other n − k − s − 1 vectors with entries
randomly and independently chosen from the uniform distribution over Λ = Z ∩ [0, λ), where
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the integer s satisfies 0 ≤ s ≤ n − k − 2. Denote by ai = (ai,j)1≤j≤n the i-th row of A. Then
‖ai‖∞ := maxj{|ai,j|} ≤ λ. We always assume that λ ≥ 2 for excluding the case of Λ = {0}.
For convenience, we still use ak+1, · · · , an−s−1 ∈ Z

n to denote the random vectors with each
entry chosen randomly and independently from the uniform distribution over Λ, and denote

Ai =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1

a2

...

ai

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

ai,1 ai,2 · · · ai,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, i = k, k + 1, · · · , n − s − 1.

To prove Theorem 1.1, we firstly need to bound from above the probability P of the event
that the matrix An−s−1 is not primitive under the assumption that the given matrix A is
primitive.

Lemma 2.1 Let all notations be as above. Then

P ≤ 4
(

2
3

)s+1
(

1 −
(

2
3

)n−k−s−1
)

+
2(n − s)2

λs+2

(

1 − 1
λn−k−s−1

)

.

We prove Lemma 2.1 following the approach of Eberly, et al. (see [2, Section 6]), whose
original goal was to bound the expected number of invariant factors for random integer matrices.
For k ≤ i ≤ n − s − 1, we define the event†.

• MDepi: There exists at least one prime number p such that rank(Ai) ≤ i − 1 over Zp.
So the assumption that A is primitive is equivalent to that the event ¬MDepk happens. Under
the assumption, we have

P = Pr[MDepn−s−1]

≤ Pr[MDepk+1 ∨ MDepk+2 ∨ · · · ∨ MDepn−s−1]

= Pr[MDepk+1 ∨ (MDepk+2 ∧ ¬MDepk+1) ∨ · · · ∨ (MDepn−s−1 ∧ ¬MDepn−s−2)]

= Pr[(MDepk+1 ∧ ¬MDepk) ∨ (MDepk+2 ∧ ¬MDepk+1)

∨ · · · ∨ (MDepn−s−1 ∧ ¬MDepn−s−2)]

≤
n−s−1
∑

i=k+1

Pr[MDepi ∧ ¬MDepi−1]

≤
n−s−1
∑

i=k+1

Pr[MDepi | ¬MDepi−1].

(5)

In order to bound Pr[MDepi | ¬MDepi−1] for k+1 ≤ i ≤ n−s−1, we need to introduce another
useful event:

• Depi: The rows of Ai are linearly dependent over Q, i.e., rank(Ai) ≤ i − 1 over Q.

†The definition of MDepi here is different from that in [2, Section 6], where MDepi denotes the event that

there exists at least one prime p such that rank(a1, · · · , ai) ≤ i − 2 over Zp.
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Now we have

Pr[MDepi | ¬MDepi−1]

= Pr[MDepi ∧ (Depi ∨ ¬Depi) | ¬MDepi−1]

= Pr[(MDepi ∧ Depi) ∨ (MDepi ∧ ¬Depi) | ¬MDepi−1]

≤ Pr[(MDepi ∧ Depi) | ¬MDepi−1] + Pr[(MDepi ∧ ¬Depi) | ¬MDepi−1].

(6)

We first bound
Pr[(MDepi ∧ Depi) | ¬MDepi−1] ≤ Pr[Depi | ¬MDepi−1].

The latter is the probability of that rank(Ai) = i − 1 over Q on the condition that Ai−1 is
primitive. From Ai−1 is primitive, it follows that there must exist i − 1 columns of Ai−1 such
that the submatrix consisting of the first i − 1 rows of these i − 1 columns has rank i − 1 over
Q. Denote by the set of indices of these columns Ci−1. Now rank(Ai) = i − 1 over Q implies
that for all j /∈ Ci−1, the entry ai,j must be a linear combination of a�,j’s for � = 1, · · · , i − 1
with the same rational coefficients that determined by those ai,j ’s with j ∈ Ci−1. However,
each entry of ai are chosen randomly and independently from the uniform distribution over Λ.
Thus, for each j /∈ Ci−1, the likelihood that ai,j is equal to such a rational linear combination
is either 0 or 1

λ . Therefore,

Pr[(MDepi ∧ Depi) | ¬MDepi−1] ≤ Pr[Depi | ¬MDepi−1] ≤
(

1
λ

)n−i+1

. (7)

To bound Pr[(MDepi ∧ ¬Depi) | ¬MDepi−1], let us consider primes p < λ and primes p ≥ λ,
respectively. For that, we define the following events

• MDep
(p)
i : For prime p, rank(Ai) ≤ i − 1 over Zp.

• MDep
(p<λ)
i : There exists a prime p < λ such that rank(Ai) ≤ i − 1 over Zp.

2.1 The Case of p < λ

We bound Pr[(MDep
(p<λ)
i ∧ Depi) | ¬MDepi−1] by Pr[MDep

(p<λ)
i | ¬MDepi−1]. The latter

one is the probability that there exists a prime p < λ such that rank(Ai) = i− 1 over Zp under
the condition that Ai−1 is primitive. Now we bound the latter one case by case.

If λ = 2, then no such prime p exists.
If λ = 3, then p = 2. Furthermore, the event

(

MDep
(p<3)
i | ¬MDepi−1

)

is that rank(Ai) =
i − 1 over Z2 assuming rank(Ai−1) = i − 1 over Zp for any prime p. It follows from the
assumption that there exist i− 1 columns of Ai such that the submatrix consisting of the first
i − 1 rows of these i − 1 columns has rank i − 1 over Z2. Denote by the set of indices of these
columns Ci−1. Now, rank(Ai) = i − 1 for p = 2 means that for each j /∈ Ci−1, the entry ai,j

must be a linear combination of a′�,js over Z2 for � = 1, · · · , i − 1. However, when λ = 3 and
p = 2, we have

Prx←Λ [x ≡ 0 mod p] =
2
3
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and

Prx←Λ [x ≡ 1 mod p] =
1
3
,

so for λ = 3 it follows that

Pr
[

MDep
(p<3)
i | ¬MDepi−1

]

≤
(

2
3

)n−i+1

.

If λ = 4, then p = 2 or p = 3. Similarly, we have

Pr
[

MDep
(p<4)
i | ¬MDepi−1

]

≤ 2
(

1
2

)n−(i−1)

≤
(

2
3

)n−i+1

for i < n − 1.
If λ = 5, then p = 2 or p = 3, and further we obtain

Pr
[

MDep
(p<5)
i | ¬MDepi−1

]

≤
(

3
5

)n−(i−1)

+
(

2
5

)n−(i−1)

≤
(

2
3

)n−i+1

for i < n − 1.
If λ = 6, then p = 2 or p = 3 or p = 5 and we have

Pr
[

MDep
(p<6)
i | ¬MDepi−1

]

≤
(

1
2

)n−i+1

+ 2
(

1
3

)n−(i−1)

≤
(

2
3

)n−i+1

for i < n − 1.
If λ = 7, then p = 2 or p = 3 or p = 5. It follows that

Pr
[

MDep
(p<7)
i | ¬MDepi−1

]

≤
(

4
7

)n−i+1

+
(

3
7

)n−(i−1)

+
(

2
7

)n−(i−1)

≤
(

2
3

)n−i+1

for i < n − 1.
If λ ≥ 8, then p = 2 or p = 3 or p = 5 or p = 7, etc. Then for i < n − 1, we have

Pr
[

MDep
(p<λ)
i | ¬MDepi−1

]

≤
(

1
2

)n−i+1

+
(

3
8

)n−(i−1)

+
(

1
4

)n−(i−1)

+
∑

p≥7

(

2
p − 1

)n−i+1

≤
(

2
3

)n−i+1

+
(

1
3

)n−i+1

·
∑

p≥7

4
(p − 1)2

≤
(

2
3

)n−i+1

+ 4 ·
(

1
3

)n−i+1

·
∞
∑

j=6

1
j2

≤
(

2
3

)n−i+1

+ 4 ·
(

1
3

)n−i+1

·
(

ζ(2) − 1 − 1
4
− 1

9
− 1

16
− 1

25

)

≤
(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

,

where ζ(·) is Riemman’s zeta function and the fact that λ/p� /λ does not increase with respect
to λ and that λ/p� /λ ≤ 2/(p − 1) for p < λ were used. Therefore, for the case of p < λ we
proved the following proposition.
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Proposition 2.2 Let λ ≥ 2 be an integer and k+1 ≤ i ≤ n−3, and suppose that the event
¬MDepi−1 happens. The probability that there exists any prime p < λ such that rank(Ai) ≤ i−1
over Zp is at most

(

2
3

)n−i+1 + 3
4

(

1
3

)n−i+1. In particular,

Pr
[

(MDep
(p<λ)
i ∧ ¬Depi) | ¬MDepi−1

]

≤
(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

. (8)

2.2 The Case of p ≥ λ

Now our goal is to bound

Pr
[

(

MDep
(p≥λ)
i ∧ ¬Depi

)

∣

∣

∣

∣

¬MDepi−1

]

= Pr

⎡

⎣

⎛

⎝

∨

p≥λ

MDep
(p)
i

⎞

⎠ ∧ ¬Depi

∣

∣

∣

∣

¬MDepi−1

⎤

⎦

= Pr

⎡

⎣

∨

p≥λ

(

MDep
(p)
i ∧ ¬Depi

)

∣

∣

∣

∣

¬MDepi−1

⎤

⎦

≤
∑

p≥λ

Pr
[

(

MDep
(p)
i ∧ ¬Depi

)

∣

∣

∣

∣

¬MDepi−1

]

,

(9)

where p ranges all primes at least λ.
If p ≥ λ is a fixed prime, then the probability that rank(Ai) ≤ i − 1 over Zp under the

condition rank(Ai−1) = i − 1 over Q is at most
(

1
λ

)n−i+1, since the probability that a value
chosen randomly and independently from the uniform distribution on Λ = Z ∩ [0, λ) equals a
given value in Zp is either 0 or 1

λ , and hence at most 1
λ . So we have

Pr
[

(MDep
(p)
i ∧ ¬Depi) | ¬MDepi−1

]

≤ Pr
[

MDep
(p)
i | ¬MDepi−1

]

≤
(

1
λ

)n−i+1

. (10)

Furthermore, we claim that

Pr
[

(

MDep
(p)
i ∧ ¬Depi

)

∣

∣

∣

∣

¬MDepi−1

]

= 0 (11)

for all primes p > (i · λ)i.
In fact, if there exists a prime p > (i · λ)i that makes the event (MDep

(p)
i ∧ ¬Depi) happen

assuming that Ai−1 is primitive, then p must divide all i × i minors of Ai. However, although
ai,j ’s (j = 1, 2, · · · , n) are chosen randomly and independently from the uniform distribution
on Λ, once ¬Depi happens, there exists at least one nonsingular i × i submatrix in Ai over Q.
The absolute value of the determinant of such a submatrix is at most i! ·λi ≤ (i ·λ)i. Combining
p > (i · λ)i, p divides the determinant, and the absolute value of the determinant is bounded
by (i · λ)i, we have the determiant must be zero, which contradicts with non-singularity of the
submatrix. Also, note that the bound (i · λ)i is independent of the choice of ai,j ’s when such
ai,j ’s make ¬Depi happen (Instead, when such ai,j ’s do not make ¬Depi happen, the probability
Pr[(MDepi ∧ Depi) | ¬MDepi−1] is already discussed in (7)).
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Now, the number of possible primes p ≥ λ that divides an integer d ≤ (i · λ)i is at most
logλ(i ·λ)i ≤ i(1+ logλ i), where d is in fact the greatest common divisor of all nonsingular i× i

submatrix of Ai over Q. Although the integer d may vary as ai,j ’s are chosen randomly and
independently from the uniform distribution on Λ, it is always bounded by (i · λ)i. Thus, the
number of possible primes that we need to consider is at most i(1 + logλ i). Thus, combining
Equations (9)–(11), we have

Pr
[

(MDep
(p≥λ)
i ∧ ¬Depi) | ¬MDepi−1

]

≤
∑

p≥λ

Pr
[

(

MDep
(p)
i ∧ ¬Depi

) ∣

∣¬MDepi−1

]

≤ (i(1 + logλ i)) ·
(

1
λ

)n−i+1

.

(12)

Therefore, it follows from Equations (8) and (12) that

Pr
[

(MDepi ∧ ¬Depi) | ¬MDepi−1

]

=Pr
[

(MDep
(p<λ)
i ∧ ¬Depi) | ¬MDepi−1

]

+ Pr
[

(MDep
(p≥λ)
i ∧ ¬Depi) | ¬MDepi−1

]

≤
(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

+ (i(1 + logλ i)) ·
(

1
λ

)n−i+1

.

(13)

Proof of Lemma 2.1 It follows from Equations (6), (7), and (13) that for integer λ ≥ 2,

Pr[MDepi|¬MDepi−1] ≤ Pr[(MDepi ∧ Depi) | ¬MDepi−1] + Pr[(MDepi ∧ ¬Depi) | ¬MDepi−1]

≤
(

1
λ

)n−i+1

+
(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

+ (i(1 + logλ i)) ·
(

1
λ

)n−i+1

≤
(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

+ (i(1 + logλ i) + 1) ·
(

1
λ

)n−i+1

.

Therefore, under the assumption that ¬MDepk happens, it follows from Equation (5) that

P = Pr[MDepn−s−1]

≤
n−s−1
∑

i=k+1

Pr[MDepi|¬MDepi−1]

≤
n−s−1
∑

i=k+1

(

(

2
3

)n−i+1

+
3
4

(

1
3

)n−i+1

+ (i(1 + logλ i) + 1) ·
(

1
λ

)n−i+1
)

≤ 2 ·
n−s−1
∑

i=k+1

(

2
3

)n−i+1

+ (n − s)(1 + logλ(n − s − 1))
n−s−1
∑

i=k+1

1
λn−i+1

≤ 4
(

2
3

)s+1
(

1 −
(

2
3

)n−k−s−1
)

+
(n − s)2

(λ − 1)λs+1

(

1 − 1
λn−k−s−1

)

≤ 4
(

2
3

)s+1
(

1 −
(

2
3

)n−k−s−1
)

+
2(n − s)2

λs+2

(

1 − 1
λn−k−s−1

)

.

Now, Theorem 1.1 is a direct consequence of Lemma 2.1.
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Remark 2.3 According to the above proof, we use localization at each prime p and count
the number of possibilities over Zp. So the set Λ can be any set containing λ contiguous integers,
as in [2, Section 6].

3 Unimodular Matrix Completion

When completing a given k × n primitive matrix to an n × n unimodular matrix, we first
complete the input matrix to an n × n matrix with n − k vectors whose entries are chosen
randomly and uniformly from the uniform distribution over Λ, and then rectify the last four
vectors via the determinant reduction technique (see [3, Section 15]). Repeat the above process
until the resulting matrix is unimodular.

Equation (3) (a consequence of Theorem 1.1) with s = 3 and λ ≥ 3(n − 3)2/5 guarantees
that the completed (n − 4) × n matrix is still primitive with a probability at least a constant,
say 0.2. Then after a constant number of repeat, it is expected that we will obtain at least
one (n − 4) × 4 primitive matrix, and the determinant reduction technique applies to produce
a unimodular matrix.

3.1 Hermite Normal Form

A matrix A ∈ Z
m×n of rank r has a (row) Hermite normal form (HNF) if there exists a

square unimodular matrix U such that H = UA satisfies the following: There exist indices
1 ≤ i1 < i2 < · · · < ir ≤ n such that for j = 1, · · · , r, hj,ij > 0, hj,k = 0 if k < ij and
0 ≤ h�,ij < hj,ij if � < j; the bottom m − r rows of H are zero.

The matrix H is unique, denoted by HNF(A), although the unimodular tranformations are
usually not unique. With the definition of HNF, we can character the primitive matrix as the
following lemma.

Lemma 3.1 A k × n integer matrix A with k < n is primitive iff HNF(AT) =
(

Ik

0

)

.

One can find a proof of this lemma in, e.g., [1].

3.2 Determinant Reduction

Given a nonsingular A ∈ Z
n×n, the determinant reduction introduced in [3, Section 15]

computes a matrix B ∈ Z
n×n, obtained from A by replacing the last column, such that the

last diagonal entry in the Hermite normal form of B is one. The determinant reduction was
originally presented for integral polynomial matrix in [3, Section 15], with a worked example
for integer matrix. Here, we give full details and analyses for the integer matrix case.

Proposition 3.2 Given a nonsingular n × n integer matrix A, Algorithm 1 correctly
computes an n×n integer matrix B within O(nω+ε log1+ε ‖A‖) bit operations, where B satisfies
the following:

• B equals A except for possibly the last column;

• The last diagonal entry of HNF(B) equals one;

• ‖B‖ = O(n2‖A‖).
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Algorithm 1 (Determinant reduction)
Input: A nonsingular integer matrix A ∈ Z

n×n.
Output: A matrix B ∈ Z

n×n, with B equals to A except for possibly the last column, ‖B‖ ≤
n2‖A‖, and the last diagonal entry of HNF(B) equal to one.

1: Set Cn−1 to be the matrix consisting of the first n− 1 columns of A. Compute a primitive
vector u ∈ Z

n such that uCn−1 = 0.
2: Call an extended gcd algorithm to compute b ∈ Z

n such that ubT = 1.
3: Set A to be the (n − 1) × (n − 1) principal submatrix of A, and b the vector consisting of

the first n − 1 entries of b.
4: Compute qT :=

⌈

A
−1

b
T
⌋

. For a vector v, v� means each entry rounded.

5: Set q := (q, 0) and set B to be A except replacing the last column by bT − AqT.
6: return B.

Proof The singularity of A implies that the vector u produced in Step 1 is the unique
primitive vector in {x ∈ Z

n : xCn−1 = 0}. Let U be an arbitrary unimodular matrix such that
H := HNF(A) = UA. Then the uniqueness of u implies that u must be the last row of U .
By construction of b in Step 2, the matrix obtained from A by replacing the last column with
bT will have HNF with the last diagonal entry one. The whole algorithm can be expressed as
the following equation

B =

⎛

⎝

A bT

a bn

⎞

⎠ ·
⎛

⎝

In−1 −qT

1

⎞

⎠ =

⎛

⎝

A bT − AqT

a bn − a qT

⎞

⎠ ,

where A is the (n− 1)× (n− 1) principal submatrix of A, b is the vector consisting of the first
n − 1 entries of b, and a is the vector consisting of the first n − 1 entries of the last row of A.
Steps 3–5 are to reduce the size of b by the columns of A. It follows from uCn−1 = 0 that
all entries of uA are zero except for possibly the last one. However, the last entry of q equals
zero, so we have uAqT = 0, and hence

u(bT − AqT) = ubT = 1, (14)

which implies that UB is exactly H except for the last column replaced by (∗, · · · , ∗, 1)T, and
hence the last diagonal of HNF(B) must be one.

We now consider the size of bT − AqT. First,
∥

∥

∥b
T − AqT

∥

∥

∥

∞
=

∥

∥

∥b
T − A

⌈

A
−1

b
T
⌋∥

∥

∥

∞

=
∥

∥

∥b
T − A

(

A
−1

b
T

+ εT
)∥

∥

∥

∞
≤ ∥

∥AεT
∥

∥

∞

≤ n − 1
2

‖A‖,

(15)

where ‖ · ‖∞ is the �∞-norm of a vector and ‖εT‖∞ ≤ 1
2 is used. In fact, Step 4 is essentially

the same as Babai’s rounding algorithm[19]. Denote u = (u, un). Without loss of generality,
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we can assume that

‖u‖∞ = un. (16)

Otherwise there must exist a permutation matrix P such that uPP−1Cn−1 = 0, uP satisfies
Equation (16), and P−1Cn−1 still corresponds to the first n − 1 columns of A but with a
certain column permutation. From Equation (14), we have un(bn − aqT) = 1 − u(b

T −AqT),
combining Equation (16), which gives

∣

∣bn − aqT
∣

∣ =
1

|un| ·
∣

∣

∣1 − u(b
T − AqT)

∣

∣

∣ ≤ 1 +
‖u‖∞
|un| · ‖bT − AqT‖1 ≤ 1 +

(n − 1)2

2
‖A‖,

where ‖·‖1 is the �1-norm of a vector, the first inequality follows from that
∣

∣xyT
∣

∣ ≤ ‖x‖∞ ·‖y‖1

holds for any two vectors x and y of the same dimension, and the second inequality follows
from Equations (15), (16), and ‖x‖1 ≤ n‖x‖∞ for all n-dimensional vector x. Therefore, the
resulting matrix B satisfies ‖B‖ ≤ n2‖A‖.

The cost of Algorithm 1 consists in nonsingular rational linear system solving (Steps 1 and 4)
that can be finished by a Las Vegas algorithm in an expected number of O(nω+ε log1+ε ‖A‖)
bit operations[20] and an extended gcd computation (Step 2) that can be accomplished within
O(n2+ε log1+ε ‖A‖) bit operations (see [4, Section 13.2]). Totally, Algorithm 1 costs at most
O(nω+ε log1+ε ‖A‖) bit operations.

Corollary 3.3 Given an (n−1)×n primitive matrix A, there exists a Las Vegas algorithm
which completes A to an n×n unimodular matrix in an expected number of O(nω+ε log1+ε ‖A‖)
bit operations.

Proof Since A is primitive, Lemma 3.1 implies that HNF(AT) has the form
(

In−1
0

)

. Now,

one can use the matrix B =
(

A
an

)T
as the input for Algorithm 1, where an can be an arbitrary

integer vector such that the resulting square matrix is nonsingular. Then, HNF(B) has the
same form as the identity matrix of order n except for the last column. Thus, the transpose of
the output matrix of Algorithm 1 will be a unimodular completion of A.

Remark 3.4 To complete an (n−1)×n primtive matrix to an n×n unimodular matrix,
a standard method is the following: Firstly compute n determinants of all (n − 1) × (n − 1)
submatrix of the input matrix and then invoking an extended euclidean algorithm will give the
information of the last row. However, this standard method can be finished in an expected num-
ber of O(nω+1+ε log1+ε ‖B‖) bit operations, even using the fast Las Vegas algorithm in [4] for
computing the determinant of an integer matrix in an expected number of O(nω+ε log1+ε ‖B‖)
bit operations.

3.3 Proof of Theorem 1.2

We prove Theorem 1.2 by Algorithm 2, which uses the Iterated Determinant Reduction
presented in [4, Section 13.2]. Given a nonsingular matrix A ∈ Z

n×n, the Iterated Determinant
Reduction technique computes a matrix B ∈ Z

n×n, obtained from A by replacing the last
d column, such that the last d diagonal entries in the Hermite normal form of B is one.
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The algorithm consists of d times calling of Algorithm 1, each followed with multiplying by a
permutation matrix P =

(

0 In−1
1 0

)

from right. Now we are ready to present our algorithm for
unimodular matrix completion (Algorithm 2).

Algorithm 2 (Unimodular matrix completion)

Input: A primitive matrix A ∈ Z
k×n with k < n and n ≥ 5.

Output: A unimodular matrix U ∈ Z
n×n, with U equal to A except for the last n − k rows

and ‖U‖ ≤ n8‖A‖.
1: Repeat
2: Set λ := max{‖A‖, 3(n− 3)2/5�} and B := AT.
3: Complete B as an n × n matrix with entries chosen randomly and independently from

the uniform distribution over {0, 1, · · · , λ − 1}.
4: Repeat the following four times:
5: Set B as the output of Algorithm 1 with input B and then set B := BP .
6: Until det(B) = ±1
7: return U := (B(P−1)4)T.

Denote Bi by the submatrix of B consisting of the first i columns. The goal of the loop in
Step 4 is to make the last four diagonal entries of the Hermite normal form of B be one. First,
we assume that BT

n−4 is primitive at the end of Step 3. Then Lemma 3.1 implies that

HNF(B) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

In−4 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

After running Algorithm 1 once, the HNF of the resulting B has the following form:

HNF(B) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

In−4 ∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ 0

∗ 0

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, HNF(BP ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

In−3 ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Therefore, at the end of execution of Step 4, we have HNF(B) = In for the resluting B, which
implies that B is unimodular.

Thanks to Equation (3) with s = 3 and λ ≥ 3(n − 3)2/5, after each execution of Step 3,
BT

n−4 is primitive with probability at least 0.2. Therefore, after c (a constant) executions of
Step 3, the probability that there is at least one BT

n−4 is primitive is at least 1 − 0.8c. So
after a constant number of executions of the loop Steps 1–6, it is expected that the output of
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Algorithm 2 is a unimodular completion of A. After each execution of Step 5, it follows from
Proposition 3.2 that the magnitude of the new column is bounded by O(n2‖B‖). Therefore,
after four executions of Step 5, the magnitude of the new column is bounded by O(n8‖A‖). So
the correctness of Algorithm 2 is proved.

The main cost part of Algorithm 2 is a constant number of executions of the loop Steps 1–6.
According to Proposition 3.2 and the algorithm for computing determinant in [4], each execution
of the loop can be finished in an expected number of O(nω+ε log1+ε ‖A‖) bit operations. As a
consequence, Theorem 1.2 is proved.

Remark 3.5 Without the help of Theorem 1.1, one may use the Iterated Determinant
Reduction algorithm n− k times for unimodular completion. This results in an algorithm that
completes A to an n×n unimodular matrix U with ‖U‖ ≤ n2(n−k)‖A‖ in an expected number
of O((n − k)nω+ε log1+ε ‖A‖) bit operations.

4 Experiments and Discussions

In this section, we present an experimental study on the empirical probability for the case
that is included in Theorem 1.1 (s ≥ 3), and also for the case that is not included in Theorem 1.1,
e.g., the case of s < 3. In all the following experimental data, each empirical probability (labeled
Exp.) are obtained by running 10, 000 random tests on computer algebra system Maple and
counting the success rate, i.e., the proportion of primitive matrices among all resulting matrices.

4.1 The Case of s ≥ 3

In Tables 1 and 2 we study the for the case of k = 0, so that we can compare the empirical
probability (column labeled Exp.), the lower bound given in Theorem 1.1 (column labeled
Th. 1), and the limit probability given in Equation (2) (column labeled Limit probability). We
use three different bounds for λ, namely, λ = 105, λ = 1010 and λ = 1020.

Table 1 Average empirical probability vs the probability in Theorem 1.1 (k = 0 and s = 3)

n
λ = 105 λ = 1010 λ = 1020

Limit probability
Exp. Th. 1.1 Exp. Th. 1.1 Exp. Th. 1.1

5 0.9652 0.7366 0.9662 0.7366 0.9639 0.7366 0.9643

10 0.9335 0.2792 0.9291 0.2792 0.9306 0.2792 0.9334

15 0.9292 0.2190 0.9278 0.2190 0.9312 0.2190 0.9325

20 0.9338 0.2110 0.9349 0.2110 0.9345 0.2110 0.9325

Table 2 Average empirical probability vs the probability in Theorem 1.1 (k = 0 and s = n − k − 2)

n
λ = 105 λ = 1010 λ = 1020

Limit probability
Exp. Th. 1.1 Exp. Th. 1.1 Exp. Th. 1.1

5 0.9652 0.7366 0.9662 0.7366 0.9639 0.7366 0.9643
10 0.9995 0.9653 0.9990 0.9653 0.9990 0.9653 0.9990
15 0.9999 0.9954 1.0000 0.9954 1.0000 0.9954 0.9999
20 1.0000 0.9993 1.0000 0.9993 1.0000 0.9993 0.9999

Both Tables 1 and 2 show that the empirical probability is relatively near to the limit prob-
ability, both of which are much better than our theoretical lower bound given in Theorem 1.1.
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As indicated previously, s = 3 is the smallest s such that the lower bound given in Theorem 1.1
is between 0 and 1 for these experiments, while s = n − k − 2 is the largest possible value.

Comparing Table 1 with Table 2, it shows that larger s implies that both higher experimental
success rate and better theoretical bound, however, smaller s implies the resulting matrix is
closer to a unimodular matrix. In particular, for the case of s = n − k − 2, the probability
bound given in Theorem 1.1 matches very well with both empirical probability and the limit
probability.

In addition, Tables 1 and 2 also show that for different λ with same n, the theoretical bounds
in column Th. 1 are almost the same and the data of empirical probability are almost the same
as well. This is because that for a large enough λ, the bound given in Theorem 1.1 is almost
independent of λ, as indicated by the oversimplified bound given in (4). For this reason, we fix
λ = 105 for all other experiments (Tables 3–10).

Tables 3–6 are for the case of k > 0, for which there does not exist a known limit probability.
We generate the initial primitive matrix as follows: We first generate a k × n matrix, whose
entries are chosen randomly and independently from the uniform distribution over [−λ, λ]∩Z.
If the matrix is not primitive, we regenerate a new matrix until it is eventually primitive. For
each initial matrix, we complete it with uniformly random entries from Λ to an (n− s− 1)× n

matrix 10, 000 times and count the success rate. From these experiments, we can observe a
similar phenomenon as the case of k = 0.

Table 3 Average empirical probability vs the probability in Theorem 1.1 (k = 1, s = 3)

n 10 15 20 25 30

Exp. 0.9321 0.9283 0.9291 0.9324 0.9310

Th. 1.1 0.3139 0.2235 0.2116 0.2101 0.2099

Table 4 Average empirical probability vs the probability in Theorem 1.1 (k = 1, s = n − k − 2)

n 5 10 15 20 25 30

Exp. 0.8919 0.9969 0.9999 1.0000 1.0000 1.0000

Th. 1.1 0.6049 0.9479 0.9931 0.9990 0.9998 0.9999

Table 5 Average empirical probability vs the probability in Theorem 1.1 (k = n/2, s = 3)

n 16 20 24 28 32 36

Exp. 0.9349 0.9338 0.9340 0.9312 0.9352 0.9333

Th. 1.1 0.3659 0.2792 0.2407 0.2235 0.2159 0.2125

Table 6 Average empirical probability vs the probability in Theorem 1.1 (k = n/2, s = n − k − 2)

n 16 20 24 28 32 36

Exp. 0.9919 0.9980 0.9996 0.9999 1.0000 1.0000

Th. 1.1 0.9219 0.9653 0.9845 0.9931 0.9969 0.9986

Totally, the probability bound presented in Theorem 1.1 is tight, especially for the case of
large s. However, how to improve the theoretical bound for small s is an intriguing problem.
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4.2 The Case of s < 3

For s < 3, the lower bound on that the resulting (n − s − 1) × n matrix is primitive given
in Theorem 1.1 will be negative and hence useless. Therefore, it would be very interesting and
useful to obtain a lower bound for the case of s < 3. Here we present some experimental results.

All test examples in Tables 7–9 are generated with the same method described in the last
subsection, i.e., the input matrices are randomly chosen. In Table 10, all test examples are fixed
to a 1 × n primitive row (1, 1, · · · , 1), but still with λ = 105. All of these tables show that for
0 ≤ s ≤ 2, the empirical probability of that the resulting matrix is primitive is relatively high,
similar with that of the case s ≥ 3 shown in the last section. However, an effective theoretical
lower bound on the probability for this case is left open.

Table 7 Average empirical probability for the case of s = 2 and λ = 105

n 16 20 24 28 32 36

k = 0 0.8599 0.8543 0.8575 0.8604 0.8628 0.8643

k = 1 0.8654 0.8618 0.8580 0.8671 0.8646 0.8620
k = n

2
0.8609 0.8611 0.8651 0.8621 0.8682 0.8662

Table 8 Average empirical probability for the case of s = 1 and λ = 105

n 16 20 24 28 32 36

k = 0 0.7201 0.7177 0.7124 0.7227 0.7125 0.7110
k = 1 0.7103 0.7141 0.7154 0.7129 0.7118 0.7192
k = n

2
0.7168 0.7212 0.7210 0.7226 0.7106 0.7154

Table 9 Average empirical probability for the case of s = 0 and λ = 105

n 16 20 24 28 32 36

k = 0 0.4365 0.4363 0.4353 0.4435 0.4434 0.4377
k = 1 0.4323 0.4337 0.4345 0.4451 0.4336 0.4440
k = n

2
0.4385 0.4371 0.4290 0.4330 0.4427 0.4330

Table 10 Average empirical probability for the case of k = 1 and λ = 105 with fixed

(1, 1, · · · , 1) ∈ Z
n as the k × n matrix to be completed

n 16 20 24 28 32 36

s = 0 0.4330 0.4354 0.4342 0.4381 0.4284 0.4407
s = 1 0.7163 0.7120 0.7209 0.7198 0.7218 0.7159
s = 2 0.8629 0.8641 0.8649 0.8673 0.8616 0.8568
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