Arithmetic operations on encrypted integers

陈经纬

September 16, 2018 @ Guangzhou

Main references on which this talk is based

- J. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup. Doing real work with FHE: The case of logistic regression. Cryptology ePrint Archive, Report 2018/202.
- C. Xu, J. Chen, W. Wu, and Y. Feng.

Homomorphically encrypted arithmetic operations over the integer ring. In: Proc. ISPEC'16.

Y. Chen, and G. Gong

Integer arithmetic over ciphertext and homomorphic data aggregation. In: Proc. CNS'15.

S. Halevi and V. Shoup.

HElib – An implementation of homomorphic encryption.

Available at github.com/shaih/HElib/

1 Background

2 Arithmetic algorithms

3 Performance

Background

- 2 Arithmetic algorithms
- 3 Performance

FHE allows "arbitrary" computation to be done on encrypted data.

Figure: The Damsel of the Sanct Grael by Dante Gabriel Rossetti (wiki)

Jingwei Chen (CIGIT, CAS)

A public key encryption scheme consists of

- KeyGen: (sk, pk) \leftarrow KeyGen (1^k) ,
- Enc: $c \leftarrow \text{Enc}(\text{pk}, x)$ for $x \in \mathscr{P} = \{0, 1\}^*$,
- Dec: $x \leftarrow \text{Dec}(\text{sk}, c)$ for $c \in \mathscr{C}$.

Definition [Brakerski'18, ECCC report no. 125]

Let \mathscr{F} be a set of function in $\{0, 1\}^* \to \{0, 1\}$. A public key scheme is \mathscr{F} -homomorphic if there exists an evaluation algorithm Eval s.t.

 $\forall f \in \mathscr{F}, \forall x \in \{0,1\}^*, \text{Dec}(\text{sk}, \text{Eval}(f, \text{Enc}(\text{pk}, x))) = f(x).$

Definition [Brakerski'18, ECCC report no. 125]

Let \mathscr{F} be a set of function in $\{0, 1\}^* \to \{0, 1\}$. A public key scheme is \mathscr{F} -homomorphic if there exists an evaluation algorithm Eval s.t.

 $\forall f \in \mathscr{F}, \forall x \in \{0,1\}^*, \text{Dec}(\text{sk}, \text{Eval}(f, \text{Enc}(\text{pk}, x))) = f(x).$

A *FHE* is a homomorphic encryption where \mathscr{F} is the set of all functions.

Definition [Brakerski'18, ECCC report no. 125]

Let \mathscr{F} be a set of function in $\{0, 1\}^* \to \{0, 1\}$. A public key scheme is \mathscr{F} -homomorphic if there exists an evaluation algorithm Eval s.t.

 $\forall f \in \mathscr{F}, \forall x \in \{0,1\}^*, \text{Dec}(\text{sk}, \text{Eval}(f, \text{Enc}(\text{pk}, x))) = f(x).$

A *FHE* is a homomorphic encryption where \mathscr{F} is the set of all functions.

• It is most common to use the boolean circuit model to represent *f*.

Definition [Brakerski'18, ECCC report no. 125]

Let \mathscr{F} be a set of function in $\{0, 1\}^* \to \{0, 1\}$. A public key scheme is \mathscr{F} -homomorphic if there exists an evaluation algorithm Eval s.t.

 $\forall f \in \mathscr{F}, \forall x \in \{0,1\}^*, \text{Dec}(\text{sk}, \text{Eval}(f, \text{Enc}(\text{pk}, x))) = f(x).$

A *FHE* is a homomorphic encryption where \mathscr{F} is the set of all functions.

• It is most common to use the boolean circuit model to represent *f*.

Existing FHE schemes

- 1st generation: [Gentry'09], ...
- 2nd generation: [Brakerski, Gentry, Vaikuntanathan'11], ...
- 3rd generation: [Gentry, Sahai, Waters'13], ...

Applications of FHE – HomomorphicEncryption.org

Domain	Genomics	Health	National Security	Education
Торіс	Match Maker	Billing & Reporting	Municipal Service	School Dropouts
Data Owner	Medical Institutions	Clinic	Nodes	School, Hospital, Welfare
Latency	Hours	Hours	Quasi-Real Time	Week
Data Volume (size×no.)	DB: 𝒪(1000 × 1 M); Query: 𝒪(1K)	𝒴(10 M × 1 M)	Ø(1 M × 1 M)	𝒴(10 K × 1 M)
Data Persistency	Add only	Add only	Add only	Add only
Technical issues	Comparison Sorting Auditing Privacy	Tabulation Linear Algebra	Comparison	Comparison Matrix Analysis
When?	1 year	2–3 years	Now	2–3 years
Why HE?	HIPAA	Cyber Insurance	Privacy	FERPA
Who pays?	Health Insurance	Hospital	Energy Company	DoE

Jingwei Chen (CIGIT, CAS)

Applications of FHE – HomomorphicEncryption.org

Domain	Genomics	Health	National Security	Education
Торіс	Match Maker	Billing & Reporting	Municipal Service	School Dropouts
Data Owner	Medical Institutions	Clinic	Nodes	School, Hospital, Welfare
Latency	Hours	Hours	Quasi-Real Time	Week
Data Volume (size×no.)	DB: 𝔃 (1000 × 1 M); Query: 𝔅 (1K)	Ø(10 M × 1 M)	Ø(1 M × 1 M)	Ø(10 K × 1 M)
Data Persistency	Add only	Add only	Add only	Add only
Technical issues	Comparison Sorting Auditing Privacy	Tabulation Linear Algebra	Comparison	Comparison Matrix Analysis
When?	1 year	2–3 years	Now	2–3 years
Why HE?	HIPAA	Cyber Insurance	Privacy	FERPA
Who pays?	Health Insurance	Hospital	Energy Company	DoE

Jingwei Chen (CIGIT, CAS)

• RLWE-based somewhat HE:

- [Naehrig, Lauter, Vaikuntanathan '11], [Wu & Haven '12] (p > 2¹²⁸), ...
- DGHV with optimizations over \mathbb{Z}_p :
 - [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
 - Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
 - ► One ciphtertext one integer, SIMD, *p* = 2: [Cheon, Kim, Kim '15],...

• RLWE-based somewhat HE:

- [Naehrig, Lauter, Vaikuntanathan '11], [Wu & Haven '12] (p > 2¹²⁸), ...
- DGHV with optimizations over \mathbb{Z}_p :
 - [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
 - Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
 - ► One ciphtertext one integer, SIMD, *p* = 2: [Cheon, Kim, Kim '15],...
 - ► One ciphtertext one bit, p = 2: [Chen & Gong '15],...

• RLWE-based somewhat HE:

- [Naehrig, Lauter, Vaikuntanathan '11], [Wu & Haven '12] (p > 2¹²⁸), ...
- DGHV with optimizations over \mathbb{Z}_p :
 - [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
 - Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
 - One ciphtertext one integer, SIMD, p = 2: [Cheon, Kim, Kim '15],...
 - ► One ciphtertext one bit, p = 2: [Chen & Gong '15],...

Figure: Encrypted binary integer representation

• RLWE-based somewhat HE:

- [Naehrig, Lauter, Vaikuntanathan '11], [Wu & Haven '12] (p > 2¹²⁸), ...
- DGHV with optimizations over \mathbb{Z}_p :
 - [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
 - Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
 - ► One ciphtertext one integer, SIMD, *p* = 2: [Cheon, Kim, Kim '15],...
 - ► One ciphtertext one bit, p = 2: [Chen & Gong '15],...

Advantages of p = 2

- XOR $(\oplus) \leftrightarrow \text{mod } 2$ addition; AND $(\cdot) \leftrightarrow \text{mod } 2$ multiplication.
- More suitable for bootstrapping.

Advantages of one ciphtertext one bit

• Support element-wise vector arithmetic.

BGV scheme and HElib

BGV scheme

- One of the most efficient FHE schemes, RLWE based;
- Designed for circuits;
- Noise management: modulus switch, key switch;
- Support SIMD operations.

BGV scheme and HElib

BGV scheme

- One of the most efficient FHE schemes, RLWE based;
- Designed for circuits;
- Noise management: modulus switch, key switch;
- Support SIMD operations.

HElib: BGV implementation based on NTL

- "Assembly language for HE";
- Double CRT representation;
- Ciphertext packing techniques (SIMD);
- Support bootstrapping;
- Thread safe.

BGV scheme and HElib

- Plaintext space: $\mathbb{Z}[X]/(\Phi_m(X), p)$.
- Ciphertext space: $\mathbb{Z}[X]/(\Phi_m(X), q), q = p_1 p_2 \cdots p_{\ell}, p_i$ prime.
 - Every ciphertext contains the same number of slots.
 - Each slot has the same size.
 - Each ciphertext is represented as an $\ell \times \phi(m)$ matrix.
- $L = \mathcal{O}(\ell)$ is the circuit level we want to support.
- Given security parameter k, we can decide m from ^a

$$\phi(m) \ge \frac{(L(\log \phi(m) + 23) - 8.5)(k + 110)}{7.2}.$$

- It evaluates L-level circuits with $\mathcal{O}(k \cdot L^3)$ per-gate computation.
 - We should optimize the circuit by reducing *L*.

ahttps://eprint.iacr.org/2012/099

Background

2 Arithmetic algorithms

3 Performance

Addition: Ripple carry adder (RCA) - [ChenGong'15]

• RCA: Add two *n*-bit numbers in a natural way.

Addition: Ripple carry adder (RCA) - [ChenGong'15]

• RCA: Add two *n*-bit numbers in a natural way.

Figure: A 1-bit full adder

$$c_{i+1} = a_i \cdot b_i \oplus c_i \cdot (a_i \oplus b_i),$$

$$s_i = a_i \oplus b_i \oplus c_i.$$

Addition: Ripple carry adder (RCA) – [ChenGong'15]

RCA: Add two n-bit numbers in a natural way.

Figure: A 1-bit full adder

Figure: A 4-bit RCA (wiki)

$$c_{i+1} = a_i \cdot b_i \oplus c_i \cdot (a_i \oplus b_i),$$

$$s_i = a_i \oplus b_i \oplus c_i.$$

Addition: Ripple carry adder (RCA) – [ChenGong'15]

RCA: Add two <u>n-bit</u> numbers in a natural way.

Figure: A 1-bit full adder

Figure: A 4-bit RCA (wiki)

$$c_{i+1} = a_i \cdot b_i \oplus c_i \cdot (a_i \oplus b_i),$$

$$s_i = a_i \oplus b_i \oplus c_i.$$

• Multiplicative depth: L = n - 1.

Addition: Ripple carry adder (RCA) - [ChenGong'15]

• RCA: Add two *n*-bit numbers in a natural way.

Figure: A 1-bit full adder

Figure: A 4-bit RCA (wiki)

$$c_{i+1} = a_i \cdot b_i \oplus c_i \cdot (a_i \oplus b_i),$$

$$s_i = a_i \oplus b_i \oplus c_i.$$

- Multiplicative depth: L = n 1.
- Optimize the number of AND gates: c_{i+1} = (a_i ⊕ c_i) ⋅ (b_i ⊕ c_i) ⊕ c_i.

Addition: Carry-lookahead adder (CLA) – [Xu et al. '16]

Figure: A 1-bit CLA

- Generate: $g_i = a_i \cdot b_i$
- Propagate: $p_i = a_i \oplus b_i$
- Carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$

• Sum:
$$s_i = p_i \oplus c_i$$

Addition: Carry-lookahead adder (CLA) – [Xu et al. '16]

- Generate: $g_i = a_i \cdot b_i$
- Propagate: $p_i = a_i \oplus b_i$
- Carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$

• Sum:
$$s_i = p_i \oplus c_i$$

Figure: A 1-bit CLA

Figure: A 4-bit CLA unit with $c_4 = gg \oplus pg \cdot c_0$, where

•
$$pg = p_3 \cdot p_2 \cdot p_1 \cdot p_0$$
,

• $gg = g_3 \oplus p_3 \cdot g_2 \oplus p_3 \cdot p_2 \cdot g_1 \oplus p_3 \cdot p_2 \cdot p_1 \cdot g_0.$

Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]

Figure: A 64-bit CLA with 4-bit CLA unit

Addition: Carry-lookahead adder (CLA) – [Xu et al. '16]

Figure: A 64-bit CLA with 4-bit CLA unit

• Multiplicative depth of an *n*-bit $(n = k^{\ell})$ CLA with *k*-bit CLA unit is

 $L \le (2\ell - 1) \lceil \log k \rceil + 1 \lesssim 2 \log n.$

Addition: Carry-lookahead adder (CLA) – [Xu et al. '16]

Figure: A 64-bit CLA with 4-bit CLA unit

Table: Multiplicative depth comparison

	RCA	CLA with 4-bit unit
16-bit	15	7
64-bit	63	11

Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]

Figure: A 64-bit CLA with 4-bit CLA unit

Can we do better?

Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]

Figure: A 64-bit CLA with 4-bit CLA unit

Can we do better? Yes!

• Generate: $g_i = a_i \cdot b_i$; propagate: $p_i = a_i \oplus b_i$; carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$.

- Generate: $g_i = a_i \cdot b_i$; propagate: $p_i = a_i \oplus b_i$; carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$.
- For example,

$$c_4 = \sum_{i=0}^3 \left(g_i \cdot \prod_{k=i+1}^3 p_k \right) \oplus c_0 \cdot \prod_{k=0}^3 p_k$$

- Generate: $g_i = a_i \cdot b_i$; propagate: $p_i = a_i \oplus b_i$; carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$.
- For example,

$$c_4 = \sum_{i=0}^3 \left(g_i \cdot \prod_{k=i+1}^3 p_k \right) \oplus c_0 \cdot \prod_{k=0}^3 p_k$$

• The idea: extend the "generate" and "propagate" bits to intervals.

•
$$p_{[i,j]} = \prod_{k=i}^{j} p_k$$
, $g_{[i,j]} = g_i \cdot p_{[i+1,j]}$, $\forall i \le j$.

- Generate: $g_i = a_i \cdot b_i$; propagate: $p_i = a_i \oplus b_i$; carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$.
- For example,

$$c_{4} = \sum_{i=0}^{3} \left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k} \right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k}$$

• The idea: extend the "generate" and "propagate" bits to intervals.

•
$$p_{[i,j]} = \prod_{k=i}^{j} p_k$$
, $g_{[i,j]} = g_i \cdot p_{[i+1,j]}$, $\forall i \le j$.
• Carry: $c_j = \sum_{i=0}^{j} g_{[i,j]} \oplus c_0 \cdot p_{[0,j-1]}$.

- Generate: $g_i = a_i \cdot b_i$; propagate: $p_i = a_i \oplus b_i$; carry: $c_{i+1} = g_i \oplus p_i \cdot c_i$.
- For example,

$$c_{4} = \sum_{i=0}^{3} \left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k} \right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k}$$

• The idea: extend the "generate" and "propagate" bits to intervals.

•
$$p_{[i,j]} = \prod_{k=i}^{j} p_k, \quad g_{[i,j]} = g_i \cdot p_{[i+1,j]}, \quad \forall i \le j.$$

• Carry:
$$c_j = \sum_{i=0} g_{[i,j]} \oplus c_0 \cdot p_{[0,j-1]}.$$

► Multiplicative depth: $L \leq \lceil \log(n+2) \rceil$ (for computing $g_{[0,n]}$)

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

- Input $u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$
- Compute $u_i + v_i + w_i = x_i + 2 \cdot y_i$, where

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

• Compute
$$u_i + v_i + w_i = x_i + 2 \cdot y_i$$
, where

•
$$x_i = u_i + v_i + w_i \mod 2$$
, $y_i = u_i v_i + v_i w_i + w_i u_i \mod 2$.

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

• Compute
$$u_i + v_i + w_i = x_i + 2 \cdot y_i$$
, where

•
$$x_i = u_i + v_i + w_i \mod 2$$
, $y_i = u_i v_i + v_i w_i + w_i u_i \mod 2$.

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

• Compute
$$u_i + v_i + w_i = x_i + 2 \cdot y_i$$
, where

• $x_i = u_i + v_i + w_i \mod 2$, $y_i = u_i v_i + v_i w_i + w_i u_i \mod 2$.

•
$$x = (x_{n-1}, \cdots, x_0), \quad y = (y_{n-1}, \cdots, y_0, 0).$$

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

• Compute
$$u_i + v_i + w_i = x_i + 2 \cdot y_i$$
, where

• $x_i = u_i + v_i + w_i \mod 2$, $y_i = u_i v_i + v_i w_i + w_i u_i \mod 2$.

•
$$x = (x_{n-1}, \cdots, x_0), \quad y = (y_{n-1}, \cdots, y_0, 0).$$

• Multiplicative depth: $L \leq \lfloor \log(n+2+1) \rfloor + 1$.

• Input
$$u = (u_{n-1}, \dots, u_0), v = (v_{n-1}, \dots, v_0), w = (w_{n-1}, \dots, w_0).$$

- Compute $u_i + v_i + w_i = x_i + 2 \cdot y_i$, where
 - $x_i = u_i + v_i + w_i \mod 2$, $y_i = u_i v_i + v_i w_i + w_i u_i \mod 2$.
- Then u + v + w = x + y, where

•
$$x = (x_{n-1}, \cdots, x_0), \quad y = (y_{n-1}, \cdots, y_0, 0).$$

• Multiplicative depth: $L \leq \lceil \log(n+2+1) \rceil + 1$.

Adding *t* integers

- Apply the three-for-two procedure until only two integers are left.
 - Multiplicative depth of this reduction: $d \approx \log_{3/2}(t)$.
 - Bitsize of input integers increases at most d.
- Then apply the addition circuit.

Two ways to subtract numbers:

• Design circuits for subtraction (RCS)

$$c_{i+1} = (a_i \oplus c_i) \cdot (b_i \oplus c_i) \oplus b_i, d_i = a_i \oplus b_i \oplus c_i.$$

- Multiplicative depth: L = n 1.
- Use adders to carry out subtraction:
 - Represent numbers in 2's complement form

$$a-b = a + \tilde{b} + 1$$
 with $c_0 = 1$,
 $\tilde{b}_i = b_i \oplus 1$.

Multiplicative depth: same as adders.

Multiplication

Constructed by additions, in a pencil and paper way, plus

- [Xu et al.'16]: truncation and rearrange the order of additions;
- [Crawford et al. '18]: the add-many-numbers procedure.

			0	0	1	0	
		×	0	0	1	1	
			0	0	1	0	
truncate	d bits	0	0	1	0		
	0	0	0	0			
0	0	0	0				

Figure: Multiplying two integers 2 x 3 in a 4-bit binary circuit

Multiplication

Constructed by additions, in a pencil and paper way, plus

- [Xu et al.'16]: truncation and rearrange the order of additions;
- [Crawford *et al.* '18]: the add-many-numbers procedure.

			0	0	1	0	
		×	0	0	1	1	
			0	0	1	0	
truncate	ed bits	0	0	1	0		
	0	0	0	0			
0	0	0	0				

Figure: Multiplying two integers 2 x 3 in a 4-bit binary circuit

• Multiplicative depth: $L \le 1 + d + \lceil \log(n + d + 2) \rceil$, $d = \lceil \log_{3/2} n \rceil$.

- Start from the most significant bit of the dividend.
- Try to subtract the divisor from each digit.
- Compute the quotient and reminder accordingly.
- Multiplicative depth: $L \approx n^2$.

- Start from the most significant bit of the dividend.
- Try to subtract the divisor from each digit.
- Compute the quotient and reminder accordingly.
- Multiplicative depth: $L \approx n^2$.
 - [Çetin, Doröz, Sunar, Martin, eprint 2015/1195]: To divide a 2n-bit number by a n-bit divisor, we can build a binary division circuit with depth of n(2 + log n).

Background

2 Arithmetic algorithms

Most of parameters in HElib are used to compute the integer m, there is a heuristic routine called FindM:

long FindM(long k. // Security parameter // levels, $L_c \approx 2\left\lceil \frac{L}{2} \right\rceil + 1$ long L_c , long С, // p = 2long р, d, long long S, long chosen m, bool verbose)

Table: Performance of [Xu et al.'16]: Run on an i7-4790 CPU at 3.60 GHz with8 GB RAM; S-time is for single thread timing

Arithmetic	Circuit	#bits	т	#slots	L _c	S-time	
Addition	RCA	16	14351	504	17	2.16	
	CLA	16	7781	150	7	2.53	
	CLA	64	13981	600	13	37.69	
Subtraction	RCS	16	14351	504	17	2.17	
	CLA	16	7781	150	7	2.52	
	CLA	64	13981	600	13	37.16	
Multiplication	RCA	8	8191	630	9	4.62	
	RCA	16	14351	504	17	46.32	
Division	RCA	4	18631	720	21	14.63	
	[Chen & Gong '15]*	4	18631	720	21	67.94	

*[ChenGong'15] use a machine with 8 Xeon 2.13 GHz processors and 512 GB RAM.

Table: Performance of [Xu *et al.*'16]: Run on an i7-4790 CPU at 3.60 GHz with 8 GB RAM; S-time is for single thread timing and M-time for 8 threads, k = 80.

Arithmetic	Circuit	#bits	т	#slots	L _c	S-time	M-time
Addition	RCA	16	14351	504	17	2.16	1.16
	CLA	16	7781	150	7	2.53	2.05
	CLA	64	13981	600	13	37.69	24.36
Subtraction	RCS	16	14351	504	17	2.17	1.20
	CLA	16	7781	150	7	2.52	2.02
	CLA	64	13981	600	13	37.16	24.73
Multiplication	RCA	8	8191	630	9	4.62	2.63
	RCA	16	14351	504	17	46.32	29.34
Division	RCA	4	18631	720	21	14.63	7.74
	[Chen & Gong '15]*	4	18631	720	21	67.94	-

*[ChenGong'15] use a machine with 8 Xeon 2.13 GHz processors and 512 GB RAM.

Table: Performance of current HElib's built-in: m = 15709 (k = 210)

		[Xu <i>et al.</i> '16]	HElib's built-in
	L _c	7	5
16-bit addtion	single thread	4.90	5.96
	8-threads	3.43	2.33
	L _c	13	7
64-bit addition	single thread	35.68	31.23
	8-threads	20.89	11.58
	L _c	17	15
16-bit multiplication	single thread	40.94	21.11
	8-threads	23.89	8.36

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.

Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.

Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.
 - We lack good development and support tools.
 - We need many more libraries and FHE toolboxes.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.

Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.
 - We lack good development and support tools.
 - We need many more libraries and FHE toolboxes.

