# Arithmetic operations on encrypted integers 

陈经纬


September 16， 2018 ＠Guangzhou

## Main references on which this talk is based

國 J. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup.
Doing real work with FHE: The case of logistic regression.
Cryptology ePrint Archive, Report 2018/202.
C. Xu, J. Chen, W. Wu, and Y. Feng.

Homomorphically encrypted arithmetic operations over the integer ring. In: Proc. ISPEC'16.

- Y. Chen, and G. Gong

Integer arithmetic over ciphertext and homomorphic data aggregation. In: Proc. CNS'15.S. Halevi and V. Shoup.

HElib - An implementation of homomorphic encryption.
Available at github.com/shaih/HElib/

## Roadmap

(1) Background
(2) Arithmetic algorithms
(3) Performance

## Roadmap

## 2 Arithmetic algorithms

(3) Performance

## Fully homomorphic encryption (FHE)

FHE allows "arbitrary" computation to be done on encrypted data.


Figure: The Damsel of the Sanct Grael by Dante Gabriel Rossetti (wiki)

## Fully homomorphic encryption (FHE)

A public key encryption scheme consists of

- KeyGen: $(\mathrm{sk}, \mathrm{pk}) \leftarrow \operatorname{KeyGen}\left(1^{k}\right)$,
- Enc: $c \leftarrow \operatorname{Enc}(\mathrm{pk}, x)$ for $x \in \mathscr{P}=\{0,1\}^{*}$,
- Dec: $x \leftarrow \operatorname{Dec}(\mathrm{sk}, c)$ for $c \in \mathscr{C}$.


## Fully homomorphic encryption (FHE)

Definition [Brakerski'18, ECCC report no. 125]
Let $\mathscr{F}$ be a set of function in $\{0,1\}^{*} \rightarrow\{0,1\}$. A public key scheme is $\mathscr{F}$-homomorphic if there exists an evaluation algorithm Eval s.t.

$$
\forall f \in \mathscr{F}, \forall x \in\{0,1\}^{*}, \operatorname{Dec}(\operatorname{sk}, \operatorname{Eval}(f, \operatorname{Enc}(\mathrm{pk}, x)))=f(x)
$$

## Fully homomorphic encryption (FHE)

Definition [Brakerski'18, ECCC report no. 125]
Let $\mathscr{F}$ be a set of function in $\{0,1\}^{*} \rightarrow\{0,1\}$. A public key scheme is $\mathscr{F}$-homomorphic if there exists an evaluation algorithm Eval s.t.

$$
\forall f \in \mathscr{F}, \forall x \in\{0,1\}^{*}, \operatorname{Dec}(\operatorname{sk}, \operatorname{Eval}(f, \operatorname{Enc}(\mathrm{pk}, x)))=f(x)
$$

A $F H E$ is a homomorphic encryption where $\mathscr{F}$ is the set of all functions.

## Fully homomorphic encryption (FHE)

Definition [Brakerski'18, ECCC report no. 125]
Let $\mathscr{F}$ be a set of function in $\{0,1\}^{*} \rightarrow\{0,1\}$. A public key scheme is $\mathscr{F}$-homomorphic if there exists an evaluation algorithm Eval s.t.

$$
\forall f \in \mathscr{F}, \forall x \in\{0,1\}^{*}, \operatorname{Dec}(\operatorname{sk}, \operatorname{Eval}(f, \operatorname{Enc}(\mathrm{pk}, x)))=f(x)
$$

A $F H E$ is a homomorphic encryption where $\mathscr{F}$ is the set of all functions.

- It is most common to use the boolean circuit model to represent $f$.


## Fully homomorphic encryption (FHE)

Definition [Brakerski' 18, ECCC report no. 125]
Let $\mathscr{F}$ be a set of function in $\{0,1\}^{*} \rightarrow\{0,1\}$. A public key scheme is $\mathscr{F}$-homomorphic if there exists an evaluation algorithm Eval s.t.

$$
\forall f \in \mathscr{F}, \forall x \in\{0,1\}^{*}, \operatorname{Dec}(\operatorname{sk}, \operatorname{Eval}(f, \operatorname{Enc}(\mathrm{pk}, x)))=f(x)
$$

A FHE is a homomorphic encryption where $\mathscr{F}$ is the set of all functions.

- It is most common to use the boolean circuit model to represent $f$.


## Existing FHE schemes

- 1st generation: [Gentry'09], ...
- 2nd generation: [Brakerski, Gentry, Vaikuntanathan'11], ...
- 3rd generation: [Gentry, Sahai, Waters'13], ...


## Applications of FHE - HomomorphicEncryption.org

| Domain | Genomics | Health | National Security | Education |
| :---: | :---: | :---: | :---: | :---: |
| Topic | Match Maker | Billing \& Reporting | Municipal Service | School Dropouts |
| Data Owner | Medical Institutions | Clinic | Nodes | School, Hospital, Welfare |
| Latency | Hours | Hours | Quasi-Real Time | Week |
| Data Volume (size $\times$ no.) | DB: $\mathscr{O}(1000 \times 1 \mathrm{M})$; <br> Query: $\mathscr{O}(1 \mathrm{~K})$ | $\sigma(10 \mathrm{M} \times 1 \mathrm{M})$ | $\mathscr{O}(1 \mathrm{M} \times 1 \mathrm{M})$ | $O(10 \mathrm{~K} \times 1 \mathrm{M})$ |
| Data Persistency | Add only | Add only | Add only | Add only |
| Technical issues | Comparison Sorting Auditing Privacy | Tabulation Linear Algebra | Comparison | Comparison Matrix Analysis |
| When? | 1 year | $2-3$ years | Now | 2-3 years |
| Why HE? | HIPAA | Cyber Insurance | Privacy | FERPA |
| Who pays? | Health Insurance | Hospital | Energy Company | DoE |

## Applications of FHE - HomomorphicEncryption.org

| Domain | Genomics | Health | National Security | Education |
| :---: | :---: | :---: | :---: | :---: |
| Topic | Match Maker | Billing \& Reporting | Municipal Service | School Dropouts |
| Data Owner | Medical Institutions | Clinic | Nodes | School, Hospital, Welfare |
| Latency | Hours | Hours | Quasi-Real Time | Week |
| Data Volume (size $\times$ no.) | DB: $\mathscr{O}(1000 \times 1 \mathrm{M})$; <br> Query: $\mathscr{O}(1 \mathrm{~K})$ | $\sigma(10 \mathrm{M} \times 1 \mathrm{M})$ | $\mathscr{O}(1 \mathrm{M} \times 1 \mathrm{M})$ | $O(10 \mathrm{~K} \times 1 \mathrm{M})$ |
| Data Persistency | Add only | Add only | Add only | Add only |
| Technical issues | Comparison Sorting Auditing Privacy | Tabulation Linear Algebra | Comparison | Comparison Matrix Analysis |
| When? | 1 year | $2-3$ years | Now | 2-3 years |
| Why HE? | HIPAA | Cyber Insurance | Privacy | FERPA |
| Who pays? | Health Insurance | Hospital | Energy Company | DoE |

## Homomorphic arithmetic on integers

- RLWE-based somewhat HE:
- [Naehrig, Lauter, Vaikuntanathan '11], [Wu \& Haven '12] ( $p>2^{128}$ ), $\ldots$
- DGHV with optimizations over $\mathbb{Z}_{p}$ :
- [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
- Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18] ...
- One ciphtertext one integer, SIMD, $p=2$ : [Cheon, Kim, Kim '15], $\ldots$


## Homomorphic arithmetic on integers

- RLWE-based somewhat HE:
- [Naehrig, Lauter, Vaikuntanathan '11], [Wu \& Haven '12] $\left(p>2^{128}\right), \ldots$
- DGHV with optimizations over $\mathbb{Z}_{p}$ :
- [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
- Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
- One ciphtertext one integer, SIMD, $p=2$ : [Cheon, Kim, Kim '15], $\ldots$
- One ciphtertext one bit, $p=2$ : [Chen \& Gong '15], $\ldots$


## Homomorphic arithmetic on integers

- RLWE-based somewhat HE:
- [Naehrig, Lauter, Vaikuntanathan '11], [Wu \& Haven '12] $\left(p>2^{128}\right), \ldots$
- DGHV with optimizations over $\mathbb{Z}_{p}$ :
- [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
- Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18] ...
- One ciphtertext one integer, SIMD, $p=2$ : [Cheon, Kim, Kim '15], $\ldots$
- One ciphtertext one bit, $p=2$ : [Chen \& Gong '15], $\ldots$
$\square$
(1)

(2)

(3)

Figure: Encrypted binary integer representation

## Homomorphic arithmetic on integers

- RLWE-based somewhat HE:
- [Naehrig, Lauter, Vaikuntanathan '11], [Wu \& Haven '12] $\left(p>2^{128}\right), \ldots$
- DGHV with optimizations over $\mathbb{Z}_{p}$ :
- [Dijk, Gentry, Halevi, Vaikuntanathan '11], [Cheon, Coron, Kim, Lee, Lepoint, Tibouchi, Yun '13], ...
- HElib-based
- Symmetric ternary coding: [Fu, Cai, Xiang, Sang '18], ...
- One ciphtertext one integer, SIMD, $p=2$ : [Cheon, Kim, Kim '15], $\ldots$
- One ciphtertext one bit, $p=2$ : [Chen \& Gong '15], $\ldots$

Advantages of $p=2$

- XOR $(\oplus) \leftrightarrow \bmod 2$ addition; AND $(\cdot) \leftrightarrow \bmod 2$ multiplication.
- More suitable for bootstrapping.


## Advantages of one ciphtertext one bit

- Support element-wise vector arithmetic.


## BGV scheme and HElib

## BGV scheme

- One of the most efficient FHE schemes, RLWE based;
- Designed for circuits;
- Noise management: modulus switch, key switch;
- Support SIMD operations.


## BGV scheme and HElib

## BGV scheme

- One of the most efficient FHE schemes, RLWE based;
- Designed for circuits;
- Noise management: modulus switch, key switch;
- Support SIMD operations.


## HElib: BGV implementation based on NTL

- "Assembly language for HE";
- Double CRT representation;
- Ciphertext packing techniques (SIMD);
- Support bootstrapping;
- Thread safe.
- Plaintext space: $\mathbb{Z}[X] /\left(\Phi_{m}(X), p\right)$.
- Ciphertext space: $\mathbb{Z}[X] /\left(\Phi_{m}(X), q\right), q=p_{1} p_{2} \cdots p_{\ell}, p_{i}$ prime.
- Every ciphertext contains the same number of slots.
- Each slot has the same size.
- Each ciphertext is represented as an $\ell \times \phi(m)$ matrix.
- $L=\mathscr{O}(\ell)$ is the circuit level we want to support.
- Given security parameter $k$, we can decide $m$ from ${ }^{a}$

$$
\phi(m) \geq \frac{(L(\log \phi(m)+23)-8.5)(k+110)}{7.2}
$$

- It evaluates $L$-level circuits with $\mathscr{O}\left(k \cdot L^{3}\right)$ per-gate computation.
- We should optimize the circuit by reducing $L$.

```
ahttps://eprint.iacr.org/2012/099
```


## Roadmap

## (1) Background

(2) Arithmetic algorithms
(3) Performance

## Addition: Ripple carry adder (RCA) - [ChenGong'15]

- RCA: Add two $n$-bit numbers in a natural way.


## Addition: Ripple carry adder (RCA) - [ChenGong'15]

- RCA: Add two $n$-bit numbers in a natural way.


Figure: A 1-bit full adder

$$
\begin{aligned}
c_{i+1} & =a_{i} \cdot b_{i} \oplus c_{i} \cdot\left(a_{i} \oplus b_{i}\right) \\
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i}
\end{aligned}
$$

## Addition: Ripple carry adder (RCA) - [ChenGong'15]

- RCA: Add two $n$-bit numbers in a natural way.


Figure: A 1-bit full adder


$$
\begin{aligned}
c_{i+1} & =a_{i} \cdot b_{i} \oplus c_{i} \cdot\left(a_{i} \oplus b_{i}\right) \\
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i}
\end{aligned}
$$

## Addition: Ripple carry adder (RCA) - [ChenGong'15]

- RCA: Add two $n$-bit numbers in a natural way.


Figure: A 1-bit full adder


Figure: A 4-bit RCA (wiki)

$$
\begin{aligned}
c_{i+1} & =a_{i} \cdot b_{i} \oplus c_{i} \cdot\left(a_{i} \oplus b_{i}\right) \\
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i}
\end{aligned}
$$

- Multiplicative depth: $L=n-1$.


## Addition: Ripple carry adder (RCA) - [ChenGong'15]

- RCA: Add two $n$-bit numbers in a natural way.


Figure: A 1-bit full adder


Figure: A 4-bit RCA (wiki)

$$
\begin{aligned}
c_{i+1} & =a_{i} \cdot b_{i} \oplus c_{i} \cdot\left(a_{i} \oplus b_{i}\right) \\
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i}
\end{aligned}
$$

- Multiplicative depth: $L=n-1$.
- Optimize the number of AND gates: $c_{i+1}=\left(a_{i} \oplus c_{i}\right) \cdot\left(b_{i} \oplus c_{i}\right) \oplus c_{i}$.


## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



- Generate: $g_{i}=a_{i} \cdot b_{i}$
- Propagate: $p_{i}=a_{i} \oplus b_{i}$
- Carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$
- Sum: $s_{i}=p_{i} \oplus c_{i}$

Figure: A 1-bit CLA

## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



- Generate: $g_{i}=a_{i} \cdot b_{i}$
- Propagate: $p_{i}=a_{i} \oplus b_{i}$
- Carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$
- Sum: $s_{i}=p_{i} \oplus c_{i}$

Figure: A 1-bit CLA


Figure: A 4-bit CLA unit with $c_{4}=g g \oplus p g \cdot c_{0}$, where

- $p g=p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0}$,
- $g g=g_{3} \oplus p_{3} \cdot g_{2} \oplus p_{3} \cdot p_{2} \cdot g_{1} \oplus p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}$.


## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



Figure: A 64-bit CLA with 4-bit CLA unit

## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



Figure: A 64-bit CLA with 4-bit CLA unit

- Multiplicative depth of an $n$-bit $\left(n=k^{\ell}\right)$ CLA with $k$-bit CLA unit is

$$
L \leq(2 \ell-1)\lceil\log k\rceil+1 \lesssim 2 \log n
$$

## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



Figure: A 64-bit CLA with 4-bit CLA unit
Table: Multiplicative depth comparison

|  | RCA | CLA with 4-bit unit |
| :---: | :---: | :---: |
| 16-bit | 15 | 7 |
| 64-bit | 63 | 11 |

## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



Figure: A 64-bit CLA with 4-bit CLA unit

Can we do better?

## Addition: Carry-lookahead adder (CLA) - [Xu et al. '16]



Figure: A 64-bit CLA with 4-bit CLA unit

Can we do better? Yes!

## Addition: Further opitimizition in HElib - [Crawiord et al. '18]

## Recall CLA

- Generate: $g_{i}=a_{i} \cdot b_{i}$; propagate: $p_{i}=a_{i} \oplus b_{i}$; carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$.


## Addition: Further opitimizition in HElib - [Crawiord et al. '18]

## Recall CLA

- Generate: $g_{i}=a_{i} \cdot b_{i}$; propagate: $p_{i}=a_{i} \oplus b_{i}$; carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$.
- For example,

$$
c_{4}=\sum_{i=0}^{3}\left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k}\right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k} .
$$

## Addition: Further opitimizition in HElib - [Crawiord et al. '18]

## Recall CLA

- Generate: $g_{i}=a_{i} \cdot b_{i}$; propagate: $p_{i}=a_{i} \oplus b_{i}$; carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$.
- For example,

$$
c_{4}=\sum_{i=0}^{3}\left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k}\right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k}
$$

- The idea: extend the "generate" and "propagate" bits to intervals.

$$
\text { - } p_{[i, j]}=\prod_{k=i}^{j} p_{k}, \quad g_{[i, j]}=g_{i} \cdot p_{[i+1, j]}, \quad \forall i \leq j .
$$

## Addition: Further opitimizition in HElib - [Crawiord et al. '18]

## Recall CLA

- Generate: $g_{i}=a_{i} \cdot b_{i}$; propagate: $p_{i}=a_{i} \oplus b_{i}$; carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$.
- For example,

$$
c_{4}=\sum_{i=0}^{3}\left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k}\right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k}
$$

- The idea: extend the "generate" and "propagate" bits to intervals.
- $p_{[i, j]}=\prod_{k=i}^{j} p_{k}, \quad g_{[i, j]}=g_{i} \cdot p_{[i+1, j]}, \quad \forall i \leq j$.
- Carry: $c_{j}=\sum_{i=0}^{j} g_{[i, j]} \oplus c_{0} \cdot p_{[0, j-1]}$.


## Addition: Further opitimizition in HElib - [Crawiord et al. '18]

## Recall CLA

- Generate: $g_{i}=a_{i} \cdot b_{i}$; propagate: $p_{i}=a_{i} \oplus b_{i}$; carry: $c_{i+1}=g_{i} \oplus p_{i} \cdot c_{i}$.
- For example,

$$
c_{4}=\sum_{i=0}^{3}\left(g_{i} \cdot \prod_{k=i+1}^{3} p_{k}\right) \oplus c_{0} \cdot \prod_{k=0}^{3} p_{k}
$$

- The idea: extend the "generate" and "propagate" bits to intervals.
- $p_{[i, j]}=\prod_{k=i}^{j} p_{k}, \quad g_{[i, j]}=g_{i} \cdot p_{[i+1, j]}, \quad \forall i \leq j$.
- Carry: $c_{j}=\sum_{i=0}^{j} g_{[i, j]} \oplus c_{0} \cdot p_{[0, j-1]}$.
- Multiplicative depth: $L \leq\lceil\log (n+2)\rceil$ (for computing $\left.g_{[0, n]}\right)$


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where
- $x_{i}=u_{i}+v_{i}+w_{i} \bmod 2, \quad y_{i}=u_{i} v_{i}+v_{i} w_{i}+w_{i} u_{i} \bmod 2$.


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where
- $x_{i}=u_{i}+v_{i}+w_{i} \bmod 2, \quad y_{i}=u_{i} v_{i}+v_{i} w_{i}+w_{i} u_{i} \bmod 2$.
- Then $u+v+w=x+y$, where


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where
- $x_{i}=u_{i}+v_{i}+w_{i} \bmod 2, \quad y_{i}=u_{i} v_{i}+v_{i} w_{i}+w_{i} u_{i} \bmod 2$.
- Then $u+v+w=x+y$, where
- $x=\left(x_{n-1}, \cdots, x_{0}\right), \quad y=\left(y_{n-1}, \cdots y_{0}, 0\right)$.


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where
- $x_{i}=u_{i}+v_{i}+w_{i} \bmod 2, \quad y_{i}=u_{i} v_{i}+v_{i} w_{i}+w_{i} u_{i} \bmod 2$.
- Then $u+v+w=x+y$, where
- $x=\left(x_{n-1}, \cdots, x_{0}\right), \quad y=\left(y_{n-1}, \cdots y_{0}, 0\right)$.
- Multiplicative depth: $L \leq\lceil\log (n+2+1)\rceil+1$.


## Addition: For many integers - [Crawiord et al. '18]

## The three-for-two procedure

- Input $u=\left(u_{n-1}, \ldots, u_{0}\right), v=\left(v_{n-1}, \ldots, v_{0}\right), w=\left(w_{n-1}, \ldots, w_{0}\right)$.
- Compute $u_{i}+v_{i}+w_{i}=x_{i}+2 \cdot y_{i}$, where
- $x_{i}=u_{i}+v_{i}+w_{i} \bmod 2, \quad y_{i}=u_{i} v_{i}+v_{i} w_{i}+w_{i} u_{i} \bmod 2$.
- Then $u+v+w=x+y$, where
- $x=\left(x_{n-1}, \cdots, x_{0}\right), \quad y=\left(y_{n-1}, \cdots y_{0}, 0\right)$.
- Multiplicative depth: $L \leq\lceil\log (n+2+1)\rceil+1$.


## Adding $t$ integers

- Apply the three-for-two procedure until only two integers are left.
- Multiplicative depth of this reduction: $d \approx \log _{3 / 2}(t)$.
- Bitsize of input integers increases at most $d$.
- Then apply the addition circuit.


## Subtraction

Two ways to subtract numbers:

- Design circuits for subtraction (RCS)

$$
\begin{array}{ll}
c_{i+1} & =\left(a_{i} \oplus c_{i}\right) \cdot\left(b_{i} \oplus c_{i}\right) \oplus b_{i}, \\
d_{i} & =a_{i} \oplus b_{i} \oplus c_{i} .
\end{array}
$$

- Multiplicative depth: $L=n-1$.
- Use adders to carry out subtraction:
- Represent numbers in 2's complement form

$$
\begin{aligned}
& a-b=a+\tilde{b}+1 \text { with } c_{0}=1, \\
& \widetilde{b_{i}}=b_{i} \oplus 1 .
\end{aligned}
$$

- Multiplicative depth: same as adders.


## Multiplication

Constructed by additions, in a pencil and paper way, plus

- [Xu et al.'16]: truncation and rearrange the order of additions;
- [Crawford et al. '18]: the add-many-numbers procedure.

|  |  | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\times$ | 0 | 0 | 1 | 1 |
|  |  | 0 | 0 | 1 | 0 |
| truncated bits | 0 | 0 | 1 | 0 |  |
| 0 | 0 | 0 | 0 |  |  |
| 0 | 0 | 0 |  |  |  |

Figure: Multiplying two integers $2 \times 3$ in a 4-bit binary circuit

## Multiplication

Constructed by additions, in a pencil and paper way, plus

- [Xu et al.'16]: truncation and rearrange the order of additions;
- [Crawford et al. '18]: the add-many-numbers procedure.

|  |  | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\times$ | 0 | 0 | 1 | 1 |
|  |  | 0 | 0 | 1 | 0 |
| truncated bits | 0 | 0 | 1 | 0 |  |
| 0 | 0 | 0 | 0 |  |  |
| 0 | 0 | 0 |  |  |  |

Figure: Multiplying two integers $2 \times 3$ in a 4-bit binary circuit

- Multiplicative depth: $L \leq 1+d+\lceil\log (n+d+2)\rceil, d=\left\lceil\log _{3 / 2} n\right\rceil$.


## Division with remainder: Non-restoring algorithm - [ChenGong'15]

- Start from the most significant bit of the dividend.
- Try to subtract the divisor from each digit.
- Compute the quotient and reminder accordingly.
- Multiplicative depth: $L \approx n^{2}$.


## Division with remainder: Non-restoring algorithm - [ChenGong'15]

- Start from the most significant bit of the dividend.
- Try to subtract the divisor from each digit.
- Compute the quotient and reminder accordingly.
- Multiplicative depth: $L \approx n^{2}$.
- [Çetin, Doröz, Sunar, Martin, eprint 2015/1195]: To divide a 2n-bit number by a $n$-bit divisor, we can build a binary division circuit with depth of $n(2+\log n)$.


## Roadmap

## (1) Background

## (2) Arithmetic algorithms

(3) Performance

Most of parameters in HElib are used to compute the integer $m$, there is a heuristic routine called FindM:


Table: Performance of [Xu et al.'16]: Run on an i7-4790 CPU at 3.60 GHz with 8 GB RAM; S-time is for single thread timing

| Arithmetic | Circuit | \#bits | $m$ | \#slots | $L_{c}$ | S-time |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Addition | RCA | 16 | 14351 | 504 | 17 | 2.16 |
|  | CLA | 16 | 7781 | 150 | 7 | 2.53 |
|  | CLA | 64 | 13981 | 600 | 13 | 37.69 |
| Subtraction | RCS | 16 | 14351 | 504 | 17 | 2.17 |
|  | CLA | 16 | 7781 | 150 | 7 | 2.52 |
|  | CLA | 64 | 13981 | 600 | 13 | 37.16 |
| Multiplication | RCA | 8 | 8191 | 630 | 9 | 4.62 |
|  | RCA | 16 | 14351 | 504 | 17 | 46.32 |
| Division | RCA | 4 | 18631 | 720 | 21 | 14.63 |
|  | [Chen \& Gong '15]* | 4 | 18631 | 720 | 21 | 67.94 |

*[ChenGong'15] use a machine with 8 Xeon 2.13 GHz processors and 512 GB RAM.

Table: Performance of [Xu et al.'16]: Run on an i7-4790 CPU at 3.60 GHz with 8 GB RAM; S-time is for single thread timing and M-time for 8 threads, $k=80$.

| Arithmetic | Circuit | \#bits | $m$ | \#slots | $L_{c}$ | S-time | M-time |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| Addition | RCA | 16 | 14351 | 504 | 17 | 2.16 | 1.16 |
|  | CLA | 16 | 7781 | 150 | 7 | 2.53 | 2.05 |
|  | CLA | 64 | 13981 | 600 | 13 | 37.69 | 24.36 |
| Subtraction | RCS | 16 | 14351 | 504 | 17 | 2.17 | 1.20 |
|  | CLA | 16 | 7781 | 150 | 7 | 2.52 | 2.02 |
|  | CLA | 64 | 13981 | 600 | 13 | 37.16 | 24.73 |
| Multiplication | RCA | 8 | 8191 | 630 | 9 | 4.62 | 2.63 |
|  | RCA | 16 | 14351 | 504 | 17 | 46.32 | 29.34 |
| Division | RCA | 4 | 18631 | 720 | 21 | 14.63 | 7.74 |
|  | [Chen \& Gong '15]* | 4 | 18631 | 720 | 21 | 67.94 | - |

*[ChenGong'15] use a machine with 8 Xeon 2.13 GHz processors and 512 GB RAM.

Table: Performance of current HElib's built-in: $m=15709$ ( $k=210$ )

|  |  | [Xu et al.'16] | HElib's built-in |
| :--- | :---: | :---: | :---: |
| 16-bit addtion | $L_{c}$ | 7 | 5 |
|  | single thread | 4.90 | 5.96 |
|  | 8-threads | 3.43 | 2.33 |
| 64-bit addition | $L_{c}$ | 13 | 7 |
|  | single thread | 35.68 | 31.23 |
|  | 8 -threads | 20.89 | 11.58 |
| 16-bit multiplication | $L_{c}$ | 17 | 15 |
|  | single thread | 40.94 | 21.11 |
|  | 8 -threads | 23.89 | 8.36 |

## Towards practical applications

[Crawford et al.'18] applies FHE (HElib) to a logistic-regression model.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.


## Towards practical applications

[Crawford et al.'18] applies FHE (HElib) to a logistic-regression model.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.


## Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.


## Towards practical applications

[Crawford et al.'18] applies FHE (HElib) to a logistic-regression model.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.


## Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.
- We lack good development and support tools.
- We need many more libraries and FHE toolboxes.


## Towards practical applications

[Crawford et al.'18] applies FHE (HElib) to a logistic-regression model.

- binary arithmetic, comparisons, sorting, reciprocals, logarithms
- It takes a few hours to handle thousands of genomic records and hundreds of fields.


## Further consideration

- Of course, the performance needs to be optimized further.
- However, the main obstacle is not the performance.
- We lack good development and support tools.
- We need many more libraries and FHE toolboxes.


## THANKS

