Computing an LLL－reduced basis of the orthogonal lattice

陈经纬

Based on joint work with Damien Stehlé and Gilles Villard

November 11， 2018 ＠JNU，Guangzhou

Motivation

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$
\left(\begin{array}{cccc}
K \cdot a_{1,1} & K \cdot a_{1,2} & \cdots & K \cdot a_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
K \cdot a_{k, 1} & K \cdot a_{k, 2} & \cdots & K \cdot a_{k, n} \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$
\left(\begin{array}{cccc}
K \cdot a_{1,1} & K \cdot a_{1,2} & \cdots & K \cdot a_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
K \cdot a_{k, 1} & K \cdot a_{k, 2} & \cdots & K \cdot a_{k, n} \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right) \xrightarrow[K \text { large enough }]{\operatorname{rank}(\mathbf{A})=k, \mathrm{LLL}}\left(\begin{array}{cc}
\mathbf{0} & * \\
\mathrm{C}_{n \times(n-k)} & *
\end{array}\right) .
$$

Motivation

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$
\left(\begin{array}{cccc}
K \cdot a_{1,1} & K \cdot a_{1,2} & \cdots & K \cdot a_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
K \cdot a_{k, 1} & K \cdot a_{k, 2} & \cdots & K \cdot a_{k, n} \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right) \xrightarrow[K \text { large enough }]{\operatorname{rank}(\mathbf{A})=k, \mathrm{LLL}}\left(\begin{array}{cc}
\mathbf{0} & * \\
\mathrm{C}_{n \times(n-k)} & *
\end{array}\right) .
$$

Then C gives short vectors of

$$
\mathscr{L}^{\perp}(\mathbf{A})=\left\{\mathbf{m} \in \mathbb{Z}^{n}: \mathbf{A}^{T} \mathbf{m}=\mathbf{0}\right\}=\operatorname{ker}\left(\mathbf{A}^{T}\right) \cap \mathbb{Z}^{n}
$$

which we call the orthogonal lattice of \mathbf{A} (kernel lattice of \mathbf{A}^{T}).

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathrm{A}\|^{\frac{k}{n-k}}$.

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
- [Lenstra, Lenstra, Lovász '82]: \#iterations $=\mathscr{O}\left(n^{2} \log \left(K\left\|\mathbf{A}^{T}\right\|\right)\right)$.

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
- [Lenstra, Lenstra, Lovász '82]: \#iterations $=\mathscr{O}\left(n^{2} \log \left(K\left\|\mathbf{A}^{T}\right\|\right)\right)$.

Example: $n=4, k=2$.

$$
A=\left(\begin{array}{cccc}
8 & 69 & 99 & 29 \\
44 & 92 & -31 & 67
\end{array}\right)^{T}
$$

- sufficient $K>253600$;

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
- [Lenstra, Lenstra, Lovász '82]: \#iterations $=\mathscr{O}\left(n^{2} \log \left(K\left\|\mathbf{A}^{T}\right\|\right)\right)$.

Example: $n=4, k=2$.

$$
A=\left(\begin{array}{cccc}
8 & 69 & 99 & 29 \\
44 & 92 & -31 & 67
\end{array}\right)^{T}
$$

- sufficient $K>253600$; heuristic $K>2015$;

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
- [Lenstra, Lenstra, Lovász '82]: \#iterations $=\mathscr{O}\left(n^{2} \log \left(K\left\|\mathbf{A}^{T}\right\|\right)\right)$.

Example: $n=4, k=2$.

$$
A=\left(\begin{array}{cccc}
8 & 69 & 99 & 29 \\
44 & 92 & -31 & 67
\end{array}\right)^{T}
$$

- sufficient $K>253600$; heuristic $K>2015$; best $K=233$.

Motivation

The problem: LLL reducing $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$.

- How large should the scaling parameter K be?
- Sufficient: $K>2^{\frac{n-1}{2}} \cdot(n-k)^{\frac{n-k}{2}} \cdot\|\mathbf{A}\|^{k}$, where $\|\mathbf{A}\|=\max \left\|\mathbf{a}_{i}\right\|$.
- Heuristic: $K>2^{\Omega(n)} \cdot\|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
- [Lenstra, Lenstra, Lovász '82]: \#iterations $=\mathscr{O}\left(n^{2} \log \left(K\left\|\mathbf{A}^{T}\right\|\right)\right)$.

Example: $n=4, k=2$.

$$
A=\left(\begin{array}{cccc}
8 & 69 & 99 & 29 \\
44 & 92 & -31 & 67
\end{array}\right)^{T}
$$

- sufficient $K>253600$; heuristic $K>2015$; best $K=233$.
- The number of LLL iterations remains for $K>458$.

Contribution

- [Pohst '87] observed this phenomenon.
- [Havas, Majewski \& Matthews '98] proved the case of $k=1$.

Contribution

- A better bound on \#iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(\mathrm{A})$.
- We prove that \#iterations is independent of K for large K.
- [Pohst '87] observed this phenomenon.
- [Havas, Majewski \& Matthews '98] proved the case of $k=1$.

Contribution

- A new potential function for the LLL algorithm.
- A better bound on \#iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(\mathrm{A})$.
- We prove that \#iterations is independent of K for large K.
- [Pohst '87] observed this phenomenon.
- [Havas, Majewski \& Matthews '98] proved the case of $k=1$.

Contribution

- A new potential function for the LLL algorithm.
a variant of the classic one
- A better bound on \#iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(\mathrm{A})$.
- We prove that \#iterations is independent of K for large K.
- [Pohst '87] observed this phenomenon.
- [Havas, Majewski \& Matthews '98] proved the case of $k=1$.

Contribution

captures the behavior of LLL more accurately

- A new potential function for the LLL algorithm.
a variant of the classic one
- A better bound on \#iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(\mathrm{A})$.
- We prove that \#iterations is independent of K for large K.
- [Pohst '87] observed this phenomenon.
- [Havas, Majewski \& Matthews '98] proved the case of $k=1$.

Background

Lattices and LLL reduced basis

- An n-dim. lattice: $\Lambda=\sum \mathbb{Z} \cdot \mathbf{b}_{i}$ for linearly independent $\left(\mathbf{b}_{i}\right)_{i \leq n}$.
- Lattice basis: $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{n}\right)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
- SVP is hard.
- But, approximations (e.g., LLL-reduced bases) are still useful.

Lattices and LLL reduced basis

- An n-dim. lattice: $\Lambda=\sum \mathbb{Z} \cdot \mathbf{b}_{i}$ for linearly independent $\left(\mathbf{b}_{i}\right)_{i \leq n}$.
- Lattice basis: $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{n}\right)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
- SVP is hard.
- But, approximations (e.g., LLL-reduced bases) are still useful.

LLL-reduced basis

Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be a basis for a lattice $\Lambda, \mathbf{b}_{i}^{*}$ the $i^{\text {th }}$ GS vector, and $\mu_{i, j}$ the GS coefficients. Then we call the basis is LLL-reduced if
(1) $\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for $1 \leq j \leq i \leq n$,
(2) $\left\|\mathbf{b}_{i}^{*}\right\|^{2} \leq 2\left\|\mathbf{b}_{i+1}^{*}\right\|^{2}$ for $1 \leq i \leq n-1$. [Siegel condition]

Lattices and LLL reduced basis

- An n-dim. lattice: $\Lambda=\sum \mathbb{Z} \cdot \mathbf{b}_{i}$ for linearly independent $\left(\mathbf{b}_{i}\right)_{i \leq n}$.
- Lattice basis: $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{n}\right)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
- SVP is hard.
- But, approximations (e.g., LLL-reduced bases) are still useful.

$$
n=2
$$

Lattices and LLL reduced basis

- An n-dim. lattice: $\Lambda=\sum \mathbb{Z} \cdot \mathbf{b}_{i}$ for linearly independent $\left(\mathbf{b}_{i}\right)_{i \leq n}$.
- Lattice basis: $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{n}\right)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
- SVP is hard.
- But, approximations (e.g., LLL-reduced bases) are still useful.

$n=2$

LLL-reduced is "nice"

- not too far from orthogonal
- GS lengths do not drop "too" fast
- short first vector: $\left\|\mathbf{b}_{1}\right\| \leq 2^{\frac{n-1}{2}} \lambda_{1}(\Lambda)$, where $\lambda_{1}(\Lambda)=\min \{\mathbf{b} \in \Lambda \backslash \mathbf{0}\}$.

Input: A basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^{m}$.
Output: An LLL-reduced basis of Λ.
(1) $k:=1$.
(2) While $k \leq n-1$ do
a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_{k}.
b. If the Siegel condition holds for k, then $k:=k+1$.
c. Else SWAP \mathbf{b}_{k} and \mathbf{b}_{k+1}; set $k:=\max \{k-1,1\}$.
(3) Return the current basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$.

The LLL algorithm [Lenstra, Lenstra, Lovász '82]

Input: A basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^{m}$.
Output: An LLL-reduced basis of Λ.
(1) $k:=1$.
(2) While $k \leq n-1$ do
a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_{k}.
b. If the Siegel condition holds for k, then $k:=k+1$.
c. Else SWAP \mathbf{b}_{k} and $\mathbf{b}_{k+1} ;$ set $k:=\max \{k-1,1\}$.
(3) Return the current basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$.

The cost \approx "\#iterations" \times "the cost of per iteration"

Input: A basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^{m}$.
Output: An LLL-reduced basis of Λ.
(1) $k:=1$.
(2) While $k \leq n-1$ do
a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_{k}.
b. If the Siegel condition holds for k, then $k:=k+1$.
c. Else SWAP \mathbf{b}_{k} and \mathbf{b}_{k+1}; set $k:=\max \{k-1,1\}$.
(3) Return the current basis $\left(\mathbf{b}_{i}\right)_{i \leq n}$.

The cost \approx "\#iterations" \times "the cost of per iteration"

- \#terations ≤ 2 \#swaps $+n$.
- \#swaps $=\mathscr{O}\left(n^{2} \log \|\mathbf{B}\|\right)$.

The classic potential for LLL

Let \mathbf{B} be a basis of an n-dimensional lattice. Define

$$
\Pi(\mathbf{B})=\sum_{i=1}^{n-1}(n-i) \log \left\|\mathbf{b}_{i}^{*}\right\| .
$$

The classic potential for LLL

Let \mathbf{B} be a basis of an n-dimensional lattice. Define

$$
\Pi(\mathbf{B})=\sum_{i=1}^{n-1}(n-i) \log \left\|\mathbf{b}_{i}^{*}\right\| .
$$

Properties

- At the begining, $\Pi(\mathbf{B})$ can be bounded from above.
- Each LLL swap decreases П(B) by a constant.
- At the end, $П(\mathbf{B})$ can be bounded from below.

The classic potential for LLL

Let \mathbf{B} be a basis of an n-dimensional lattice. Define

$$
\Pi(\mathbf{B})=\sum_{i=1}^{n-1}(n-i) \log \left\|\mathbf{b}_{i}^{*}\right\|
$$

Figure: Sandpile model for LLL (Figure courtesy of Brigitte Vallée)

The new potential

Observations

Figure: At the beginning

Figure: At the end

Observations

Figure: An example

Observations

$\max _{i} \log \left\|\mathbf{b}_{i}^{*}\right\|$

Figure: An example

Observations

$\max _{i} \log \left\|\mathbf{b}_{i}^{*}\right\|$

Figure: An example

Observations

$\max _{i} \log \left\|\mathbf{b}_{i}^{*}\right\|$

Figure: An example

Observations

Figure: An example

Basic idea: capture the unbalance

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

Basic idea: capture the unbalance

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

- Partition the vectors into two groups by their GS lengths
- the k vectors with larger GS length
- the other $n-k$ vectors with smaller GS length

Basic idea: capture the unbalance

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

- Partition the vectors into two groups by their GS lengths
- the k vectors with larger GS length
- the other $n-k$ vectors with smaller GS length
- Partition all swaps into three kinds
- small \longleftrightarrow small
- large \longleftrightarrow large
- small \longleftrightarrow large
- [van Hoeij \& Novocin '10]: remove vectors with small GS length.

The new potential function

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.

The new potential function

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths
- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths

We define

$$
\Pi_{k}(\mathbf{B})=\sum_{j=1}^{k-1}(k-j) \log \left\|\mathbf{b}_{\ell_{j}}^{*}\right\|-\sum_{i=1}^{n-k} i \log \left\|\mathbf{b}_{s_{i}}^{*}\right\|+\sum_{i=1}^{n-k} s_{i} .
$$

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths

We define

$$
\Pi_{k}(\mathbf{B})=\sum_{j=1}^{k-1}(k-j) \log \left\|\mathbf{b}_{\ell_{j}}^{*}\right\|-\sum_{i=1}^{n-k} i \log \left\|\mathbf{b}_{s_{i}}^{*}\right\|+\sum_{i=1}^{n-k} s_{i} .
$$

large \leftrightarrow large

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths

We define

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths

We define

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_{1}<\cdots<s_{n-k}$: the indices of the $n-k$ smallest GS lengths
- $\ell_{1}<\cdots<\ell_{k}$: the indices of the other k GS lengths

We define

- $\Pi_{n}(\mathbf{B})=\Pi(\mathbf{B})$.

Monotonicity

Let B and \mathbf{B}^{\prime} be the current n-dimensional lattice bases before and after an LLL swap. Then for any $k \leq n$, we have

$$
\Pi_{k}(\mathbf{B})-\Pi_{k}\left(\mathbf{B}^{\prime}\right) \geq \log (2 / \sqrt{3}) .
$$

Properties of $\Pi_{k}(B)$

Monotonicity

Let B and \mathbf{B}^{\prime} be the current n-dimensional lattice bases before and after an LLL swap. Then for any $k \leq n$, we have

$$
\Pi_{k}(\mathbf{B})-\Pi_{k}\left(\mathbf{B}^{\prime}\right) \geq \log (2 / \sqrt{3}) .
$$

Bounding \#swaps

Given full column rank matrix B as input, LLL returns \mathbf{B}^{\prime}. Then \#swaps that LLL performs is no greater than

$$
\min _{1 \leq k \leq n} \frac{\Pi_{k}(\mathbf{B})-\Pi_{k}\left(\mathbf{B}^{\prime}\right)}{\log \left(\frac{2}{\sqrt{3}}\right)}
$$

The main result

Let K be a sufficiently large integer. Then, given $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$ as input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of $\mathscr{L}^{\perp}(\mathrm{A})$ after at most

$$
\mathscr{O}\left(k^{3}+k(n-k)(1+\log \|\mathbf{A}\|)\right)
$$

LLL swaps.

The main result

Let K be a sufficiently large integer. Then, given $\left(K \cdot \mathbf{A}, \mathbf{I}_{n}\right)^{T}$ as input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of $\mathscr{L}^{\perp}(\mathrm{A})$ after at most

$$
\mathscr{O}\left(k^{3}+k(n-k)(1+\log \|\mathbf{A}\|)\right)
$$

LLL swaps.

- The result is independent of K.

Comparison

Table: Upper bounds on \#swaps for different $k, \alpha=\log \|\mathbf{A}\|$.

	Sufficient K	Heuristic K
$k=1$	$\mathscr{O}\left(n^{2} \log n+n \alpha\right)$	$\mathscr{O}\left(n^{2}+n \alpha\right)$
$k=n / 2$	$\mathscr{O}\left(n^{3} \log n+n^{3} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$
$k=n-1$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{2} \alpha\right)$

Comparison

Table: Upper bounds on \#swaps for different $k, \alpha=\log \|\mathbf{A}\|$.

	Sufficient K	Heuristic K	New analysis
$k=1$	$\mathscr{O}\left(n^{2} \log n+n \alpha\right)$	$\mathscr{O}\left(n^{2}+n \alpha\right)$	$\mathscr{O}(n \alpha)$
$k=n / 2$	$\mathscr{O}\left(n^{3} \log n+n^{3} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$
$k=n-1$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n \alpha\right)$

Comparison

Table: Upper bounds on \#swaps for different $k, \alpha=\log \|\mathbf{A}\|$.

	Sufficient K	Heuristic K	New analysis
$k=1$	$\mathscr{O}\left(n^{2} \log n+n \alpha\right)$	$\mathscr{O}\left(n^{2}+n \alpha\right)$	$\mathscr{O}(n \alpha)$
$k=n / 2$	$\mathscr{O}\left(n^{3} \log n+n^{3} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$
$k=n-1$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n \alpha\right)$

- When $k=n-1$ and $\log \|\mathbf{A}\|=o(n)$,

Comparison

Table: Upper bounds on \#swaps for different $k, \alpha=\log \|\mathbf{A}\|$.

	Sufficient K	Heuristic K	New analysis
$k=1$	$\mathscr{O}\left(n^{2} \log n+n \alpha\right)$	$\mathscr{O}\left(n^{2}+n \alpha\right)$	$\mathscr{O}(n \alpha)$
$k=n / 2$	$\mathscr{O}\left(n^{3} \log n+n^{3} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n^{2} \alpha\right)$
$k=n-1$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{2} \alpha\right)$	$\mathscr{O}\left(n^{3}+n \alpha\right)$

- When $k=n-1$ and $\log \|\mathbf{A}\|=o(n)$, (17)
- LLL is not a good choice. E.g., one can use [Storjohann '05], ...

Future work

- Apply to more general bit complexity studies of LLL.
- Apply to more kinds of special lattice bases for LLL.
- Apply to design more efficient LLL-type algorithms.

Future work

- Apply to more general bit complexity studies of LLL.
- Apply to more kinds of special lattice bases for LLL.
- Apply to design more efficient LLL-type algorithms.

