Computing an LLL-reduced basis of the orthogonal lattice

Based on joint work with Damien Stehlé and Gilles Villard

November 11, 2018 @ JNU, Guangzhou

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$\begin{pmatrix} \mathbf{K} \cdot a_{1,1} & \mathbf{K} \cdot a_{1,2} & \cdots & \mathbf{K} \cdot a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{K} \cdot a_{k,1} & \mathbf{K} \cdot a_{k,2} & \cdots & \mathbf{K} \cdot a_{k,n} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$\begin{pmatrix} \mathbf{K} \cdot a_{1,1} & \mathbf{K} \cdot a_{1,2} & \cdots & \mathbf{K} \cdot a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{K} \cdot a_{k,1} & \mathbf{K} \cdot a_{k,2} & \cdots & \mathbf{K} \cdot a_{k,n} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \xrightarrow{\operatorname{rank}(\mathbf{A})=k, \, \mathsf{LLL}} \begin{pmatrix} \mathbf{0} & \ast \\ \mathbf{C}_{n \times (n-k)} & \ast \end{pmatrix}.$$

The problem: Given $\mathbf{A} \in \mathbb{Z}^{n \times k}$, consider using LLL to reduce

$$\begin{pmatrix} \mathbf{K} \cdot a_{1,1} & \mathbf{K} \cdot a_{1,2} & \cdots & \mathbf{K} \cdot a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{K} \cdot a_{k,1} & \mathbf{K} \cdot a_{k,2} & \cdots & \mathbf{K} \cdot a_{k,n} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \xrightarrow{\operatorname{rank}(\mathbf{A})=k, \, \mathsf{LLL}} \begin{pmatrix} \mathbf{0} & \ast \\ \mathbf{C}_{n \times (n-k)} & \ast \end{pmatrix}.$$

Then C gives short vectors of

$$\mathscr{L}^{\perp}(\mathbf{A}) = \left\{ \mathbf{m} \in \mathbb{Z}^n : \mathbf{A}^T \mathbf{m} = \mathbf{0} \right\} = \ker(\mathbf{A}^T) \cap \mathbb{Z}^n,$$

which we call the orthogonal lattice of A (kernel lattice of A^{T}).

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter *K* be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot \|\mathbf{A}\|^k$, where $\|\mathbf{A}\| = \max \|\mathbf{a}_i\|$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot ||\mathbf{A}||^{\frac{k}{n-k}}$.

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter K be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot ||\mathbf{A}||^k$, where $||\mathbf{A}|| = \max ||\mathbf{a}_i||$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot \|\mathbf{A}\|^{\frac{k}{n-k}}$.

• How does K impact the complexity bound of LLL?

• [Lenstra, Lenstra, Lovász '82]: #iterations = $\mathcal{O}(n^2 \log(\mathbf{K} \| \mathbf{A}^T \|))$.

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter K be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot ||\mathbf{A}||^k$, where $||\mathbf{A}|| = \max ||\mathbf{a}_i||$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot \|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
 - [Lenstra, Lenstra, Lovász '82]: #iterations = $\mathcal{O}(n^2 \log(\mathbf{K} \| \mathbf{A}^T \|))$.

Example:
$$n = 4, k = 2$$
.

$$\mathbf{A} = \left(\begin{array}{rrrr} 8 & 69 & 99 & 29 \\ 44 & 92 & -31 & 67 \end{array}\right)^T$$

• sufficient *K* > 253 600;

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter K be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot ||\mathbf{A}||^k$, where $||\mathbf{A}|| = \max ||\mathbf{a}_i||$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot \|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
 - [Lenstra, Lenstra, Lovász '82]: #iterations = $\mathcal{O}(n^2 \log(\mathbf{K} \| \mathbf{A}^T \|))$.

Example:
$$n = 4, k = 2$$
.

$$\mathbf{A} = \left(\begin{array}{rrrr} 8 & 69 & 99 & 29 \\ 44 & 92 & -31 & 67 \end{array}\right)^T$$

• sufficient *K* > 253 600; heuristic *K* > 2015;

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter K be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot ||\mathbf{A}||^k$, where $||\mathbf{A}|| = \max ||\mathbf{a}_i||$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot \|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
 - [Lenstra, Lenstra, Lovász '82]: #iterations = $\mathcal{O}(n^2 \log(\mathbf{K} \| \mathbf{A}^T \|))$.

Example:
$$n = 4, k = 2$$
.

$$\mathbf{A} = \left(\begin{array}{rrrr} 8 & 69 & 99 & 29 \\ 44 & 92 & -31 & 67 \end{array}\right)^T$$

• sufficient $K > 253\,600$; heuristic $K > 2\,015$; best K = 233.

The problem: LLL reducing $(\mathbf{K} \cdot \mathbf{A}, \mathbf{I}_n)^T$.

- How large should the scaling parameter *K* be?
 - Sufficient: $K > 2^{\frac{n-1}{2}} \cdot (n-k)^{\frac{n-k}{2}} \cdot ||\mathbf{A}||^k$, where $||\mathbf{A}|| = \max ||\mathbf{a}_i||$.
 - Heuristic: $K > 2^{\Omega(n)} \cdot \|\mathbf{A}\|^{\frac{k}{n-k}}$.
- How does K impact the complexity bound of LLL?
 - [Lenstra, Lenstra, Lovász '82]: #iterations = $\mathcal{O}(n^2 \log(\mathbf{K} \| \mathbf{A}^T \|))$.

Example:
$$n = 4, k = 2$$
.

$$\mathbf{A} = \left(\begin{array}{rrrr} 8 & 69 & 99 & 29 \\ 44 & 92 & -31 & 67 \end{array}\right)^T$$

- sufficient $K > 253\,600$; heuristic $K > 2\,015$; best K = 233.
- The number of LLL iterations remains for K > 458.

- [Pohst '87] observed this phenomenon.
- [Havas, Majewski & Matthews '98] proved the case of k = 1.

- A better bound on #iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(A)$.
 - We prove that #iterations is independent of *K* for large *K*.
 - [Pohst '87] observed this phenomenon.
 - [Havas, Majewski & Matthews '98] proved the case of k = 1.

• A new potential function for the LLL algorithm.

- A better bound on #iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(A)$.
 - We prove that #iterations is independent of *K* for large *K*.
 - [Pohst '87] observed this phenomenon.
 - [Havas, Majewski & Matthews '98] proved the case of k = 1.

• A new potential function for the LLL algorithm.

a variant of the classic one

- A better bound on #iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(A)$.
 - We prove that #iterations is independent of *K* for large *K*.
 - [Pohst '87] observed this phenomenon.
 - [Havas, Majewski & Matthews '98] proved the case of k = 1.

captures the behavior of LLL more accurately

• A new potential function for the LLL algorithm.

a variant of the classic one

- A better bound on #iterations of LLL for computing a reduced basis of the orthogonal lattice $\mathscr{L}^{\perp}(A)$.
 - We prove that #iterations is independent of *K* for large *K*.
 - [Pohst '87] observed this phenomenon.
 - [Havas, Majewski & Matthews '98] proved the case of k = 1.

Background

- An *n*-dim. lattice: $\Lambda = \sum \mathbb{Z} \cdot \mathbf{b}_i$ for linearly independent $(\mathbf{b}_i)_{i \leq n}$.
- Lattice basis: $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
 - SVP is hard.
 - But, approximations (e.g., LLL-reduced bases) are still useful.

- An *n*-dim. lattice: $\Lambda = \sum \mathbb{Z} \cdot \mathbf{b}_i$ for linearly independent $(\mathbf{b}_i)_{i \leq n}$.
- Lattice basis: $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
 - SVP is hard.
 - But, approximations (e.g., LLL-reduced bases) are still useful.

LLL-reduced basis

Let $\mathbf{b}_1, \dots, \mathbf{b}_n$ be a basis for a lattice Λ , \mathbf{b}_i^* the i^{th} GS vector, and $\mu_{i,j}$ the GS coefficients. Then we call the basis is LLL-reduced if (1) $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq j \leq i \leq n$, (2) $\|\mathbf{b}_i^*\|^2 \leq 2\|\mathbf{b}_{i+1}^*\|^2$ for $1 \leq i \leq n-1$. [Siegel condition]

- An *n*-dim. lattice: $\Lambda = \sum \mathbb{Z} \cdot \mathbf{b}_i$ for linearly independent $(\mathbf{b}_i)_{i \leq n}$.
- Lattice basis: $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
 - SVP is hard.
 - But, approximations (e.g., LLL-reduced bases) are still useful.

- An *n*-dim. lattice: $\Lambda = \sum \mathbb{Z} \cdot \mathbf{b}_i$ for linearly independent $(\mathbf{b}_i)_{i \leq n}$.
- Lattice basis: $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n)$.
- SVP: Given a basis of Λ, find a shortest non-zero vector in Λ.
 - SVP is hard.
 - But, approximations (e.g., LLL-reduced bases) are still useful.

LLL-reduced is "nice"

- not too far from orthogonal
- GS lengths do not drop "too" fast
- short first vector: $\|\mathbf{b}_1\| \le 2^{\frac{n-1}{2}} \lambda_1(\Lambda)$, where $\lambda_1(\Lambda) = \min\{\mathbf{b} \in \Lambda \setminus \mathbf{0}\}$.

Input: A basis $(\mathbf{b}_i)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^m$. **Output**: An LLL-reduced basis of Λ .

1 k := 1.

2 While $k \le n-1$ do

a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_k .

b. If the Siegel condition holds for k, then k := k + 1.

c. Else SWAP \mathbf{b}_k and \mathbf{b}_{k+1} ; set $k := \max\{k-1, 1\}$.

3 Return the current basis $(\mathbf{b}_i)_{i \le n}$.

Input: A basis $(\mathbf{b}_i)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^m$. **Output**: An LLL-reduced basis of Λ .

- **1** k := 1.
- 2 While $k \le n-1$ do
 - a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_k .
 - **b.** If the Siegel condition holds for k, then k := k + 1.
 - c. Else SWAP \mathbf{b}_k and \mathbf{b}_{k+1} ; set $k := \max\{k-1, 1\}$.
- Solution 8 Return the current basis $(\mathbf{b}_i)_{i \leq n}$.

The cost \approx "#iterations" \times "the cost of per iteration"

Input: A basis $(\mathbf{b}_i)_{i \leq n}$ of a lattice $\Lambda \subseteq \mathbb{Z}^m$. **Output**: An LLL-reduced basis of Λ .

- **1** k := 1.
- 2 While $k \le n-1$ do
 - a. Size-reduce \mathbf{b}_{k+1} with respect to \mathbf{b}_k .
 - **b.** If the Siegel condition holds for k, then k := k + 1.
 - c. Else SWAP \mathbf{b}_k and \mathbf{b}_{k+1} ; set $k := \max\{k-1, 1\}$.
- Solution 8 Return the current basis $(\mathbf{b}_i)_{i \leq n}$.

The cost \approx "#iterations" \times "the cost of per iteration"

- #iterations ≤ 2 #swaps+n.
- #swaps = $\mathcal{O}(n^2 \log ||\mathbf{B}||)$.

The classic potential for LLL

Let **B** be a basis of an n-dimensional lattice. Define

$$\Pi(\mathbf{B}) = \sum_{i=1}^{n-1} (n-i) \log \|\mathbf{b}_i^*\|.$$

Let \mathbf{B} be a basis of an n-dimensional lattice. Define

$$\Pi(\mathbf{B}) = \sum_{i=1}^{n-1} (n-i) \log \|\mathbf{b}_i^*\|.$$

Properties

- At the begining, $\Pi(\mathbf{B})$ can be bounded from above.
- Each LLL swap decreases Π(B) by a constant.
- At the end, $\Pi(\mathbf{B})$ can be bounded from below.

The classic potential for LLL

Let **B** be a basis of an n-dimensional lattice. Define

$$\Pi(\mathbf{B}) = \sum_{i=1}^{n-1} (n-i) \log \|\mathbf{b}_i^*\|.$$

Figure: Sandpile model for LLL (Figure courtesy of Brigitte Vallée)

The new potential

Figure: At the beginning

Figure: At the end

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

- Partition the vectors into two groups by their GS lengths
 - the k vectors with larger GS length
 - the other n-k vectors with smaller GS length

Observation

Those vectors with small GS lengths do not interfere much with those vectors with large GS lengths.

- Partition the vectors into two groups by their GS lengths
 - the k vectors with larger GS length
 - the other n-k vectors with smaller GS length
- Partition all swaps into three kinds
 - small ↔ small
 - ► large \leftrightarrow large
 - ▶ small \leftrightarrow large
- [van Hoeij & Novocin '10]: remove vectors with small GS length.

• Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other *k* GS lengths

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other *k* GS lengths

$$\Pi_k(\mathbf{B}) = \sum_{j=1}^{k-1} (k-j) \log \|\mathbf{b}_{\ell_j}^*\| - \sum_{i=1}^{n-k} i \log \|\mathbf{b}_{s_i}^*\| + \sum_{i=1}^{n-k} s_i.$$

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other *k* GS lengths

$$\Pi_{k}(\mathbf{B}) = \sum_{j=1}^{k-1} (k-j) \log \|\mathbf{b}_{\ell_{j}}^{*}\| - \sum_{i=1}^{n-k} i \log \|\mathbf{b}_{s_{i}}^{*}\| + \sum_{i=1}^{n-k} s_{i}.$$
large \leftarrow large

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other *k* GS lengths

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other k GS lengths

- Let $k \leq n \leq m$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- $s_1 < \cdots < s_{n-k}$: the indices of the n-k smallest GS lengths
- $\ell_1 < \cdots < \ell_k$: the indices of the other k GS lengths

Monotonicity

Let **B** and **B**' be the current *n*-dimensional lattice bases before and after an LLL swap. Then for any $k \le n$, we have

 $\Pi_k(\mathbf{B}) - \Pi_k(\mathbf{B}') \ge \log(2/\sqrt{3}).$

Monotonicity

Let **B** and **B**' be the current *n*-dimensional lattice bases before and after an LLL swap. Then for any $k \le n$, we have

$$\Pi_k(\mathbf{B}) - \Pi_k(\mathbf{B}') \ge \log(2/\sqrt{3}).$$

Bounding #swaps

Given full column rank matrix B as input, LLL returns $B^\prime.$ Then #swaps that LLL performs is no greater than

$$\min_{k\leq k\leq n}\frac{\prod_k(\mathbf{B})-\prod_k(\mathbf{B}')}{\log\left(\frac{2}{\sqrt{3}}\right)}.$$

The main result

Let *K* be a sufficiently large integer. Then, given $(K \cdot \mathbf{A}, \mathbf{I}_n)^T$ as input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of $\mathscr{L}^{\perp}(\mathbf{A})$ after at most

$$\mathcal{O}(k^3 + k(n-k)(1 + \log \|\mathbf{A}\|))$$

LLL swaps.

The main result

Let *K* be a sufficiently large integer. Then, given $(K \cdot \mathbf{A}, \mathbf{I}_n)^T$ as input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of $\mathscr{L}^{\perp}(\mathbf{A})$ after at most

$$\mathcal{O}(k^3 + k(n-k)(1 + \log \|\mathbf{A}\|))$$

LLL swaps.

• The result is independent of *K*.

Table: Upper bounds on #swaps for different k, $\alpha = \log ||\mathbf{A}||$.

	Sufficient K	Heuristic K	
k = 1	$\mathscr{O}(n^2\log n + n\alpha)$	$\mathcal{O}(n^2 + n\alpha)$	
k = n/2	$\mathcal{O}(n^3\log n + n^3\alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$	
k = n - 1	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^2 \alpha)$	

Table: Upper bounds on #swaps for different k, $\alpha = \log ||\mathbf{A}||$.

	Sufficient K	Heuristic K	New analysis
k = 1	$\mathcal{O}(n^2\log n + n\alpha)$	$\mathcal{O}(n^2 + n\alpha)$	$\mathcal{O}(n\alpha)$
k = n/2	$\mathcal{O}(n^3\log n + n^3\alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$
k = n - 1	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^3+n\alpha)$

Table: Upper bounds on #swaps for different k, $\alpha = \log ||\mathbf{A}||$.

	Sufficient K	Heuristic K	New analysis
k = 1	$\mathcal{O}(n^2\log n + n\alpha)$	$\mathcal{O}(n^2 + n\alpha)$	$\mathcal{O}(n\alpha)$
k = n/2	$\mathcal{O}(n^3\log n + n^3\alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$
k = n - 1	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^3 + n\alpha)$

• When k = n - 1 and $\log ||\mathbf{A}|| = o(n)$,

 (\mathbf{i})

Table: Upper bounds on #swaps for different k, $\alpha = \log ||\mathbf{A}||$.

	Sufficient K	Heuristic K	New analysis
k = 1	$\mathcal{O}(n^2\log n + n\alpha)$	$\mathcal{O}(n^2 + n\alpha)$	$\mathcal{O}(n\alpha)$
k = n/2	$\mathcal{O}(n^3\log n + n^3\alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$	$\mathcal{O}(n^3 + n^2 \alpha)$
k = n - 1	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^2 \alpha)$	$\mathcal{O}(n^3 + n\alpha)$

• When k = n - 1 and $\log ||A|| = o(n)$,

LLL is not a good choice. E.g., one can use [Storjohann '05], ...

- Apply to more general bit complexity studies of LLL.
- Apply to more kinds of special lattice bases for LLL.
- Apply to design more efficient LLL-type algorithms.

- Apply to more general bit complexity studies of LLL.
- Apply to more kinds of special lattice bases for LLL.
- Apply to design more efficient LLL-type algorithms.

