A New View on HJLS and PSLQ: Sums and Projections of Lattices

Jingwei Chen Damien Stehlé Gilles Villard

Chengdu Institute of Computer Application, CAS CNRS - ENS de Lyon - UCBL - Université de Lyon - INRIA Laboratoire LIP

> ISSAC '13 Boston, USA 28, June, 2013

To give a better understanding of the HJLS and PSLQ algorithms

• To propose an algorithm for a fundamental problem on finitely generated additive subgroups of \mathbb{R}^n

Outline

Background

- A new view on HJLS-PSLQ
- Observe the second s
- Conclusion and open problems

Outline

Background

- 2 A new view on HJLS-PSLQ
- 3 Decomp using HJLS
- Onclusion and open problems

Lattices

d-dimensional lattice $\triangleq \sum_{i \leq d} \mathbb{Z}\mathbf{b}_i$ for linearly indep. \mathbf{b}_i 's in \mathbb{R}^n , referred to as lattice basis.

Bases are not unique when $d \ge 2$, but related one another by integer transforms with determinant ± 1 .

A lattice is also a discrete additive subgroup of \mathbb{R}^n .

$$\lambda_1(\Lambda) = \min\{\|\mathbf{b}\|_2 : \mathbf{b} \in \Lambda \setminus \mathbf{0}\}.$$

Integer relation finding

The problem

An integer relation $\mathbf{m} \in \mathbb{Z}^n \setminus \mathbf{0}$ for $\mathbf{x} \in \mathbb{R}^n$ satisfies

 $\langle \mathbf{m}, \mathbf{x} \rangle = \mathbf{0}.$

Does there exist any? Find one/all.

Let $\Lambda_x := \mathbb{Z}^n \cap \mathbf{x}^{\perp}$. Then Λ_x is a lattice.

Application

For α , find $f(x) \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

A brief history of integer relation finding

• Ferguson and Forcade '79

- LLL: Lenstra, Lenstra and Lovász '82
- HJLS: Håstad, Just, Lagarias and Schnorr '89
- PSLQ: Ferguson, Bailey and Arno '99

Remark

Essentially, PSLQ is equivalent to HJLS.

"... Ferguson and Forcade's generalization, although much more difficult to implement (and to understand), is also more powerful..."¹

¹B. Cipra '00. The best of the 20th century: Editors name top 10 algorithms.

The HJLS-PSLQ algorithm [HJLS89, FBA99]

Input: $\mathbf{x} = (x_i) \in \mathbb{R}^n$ with $x_i \neq 0$. Output: $\mathbf{m} \in \Lambda_x \setminus \mathbf{0}$, or assert $\lambda_1(\Lambda_x) \geq M$.

1. Compute a lower trapezoidal matrix $H_x \in \mathbb{R}^{n \times (n-1)}$ whose columns form a basis of \mathbf{x}^{\perp} . Let $H := H_x$.

Partial Sums:
$$s_k^2 = \sum_{j=k}^n x_j^2$$

The HJLS-PSLQ algorithm [HJLS89, FBA99]

- 2. While $h_{n-1,n-1} \neq 0$ do
 - 2.1. Choose r maximizing $2^r \cdot |h_{r,r}|^2$; swap the r-th and (r + 1)-th rows of H; LQ decompose H.
 - 2.2. Size-reduce the rows of $H(\text{s.t. } |h_{i,j}| \le |h_{j,j}|/2 \text{ for } i > j)$. [If $h_{n-1,n-1} \ne 0$, then $\lambda_1(\Lambda_x) > 1/\max\{h_{i,i}\}$.]

3. Return the last row of U^{-T} , where U is the product of all transform matrices.

Some comments on HJLS-PSLQ

A generic description

- Compute H_x .
- **2** Reduce the rows of H_x .

• Return the last row of U^{-T} .

Remarks

- The rows of H_x may not form a lattice.
- Global swap condition.
- U^{-T} & duality.

Outline

Background

A new view on HJLS-PSLQ

- 3 Decomp using HJLS
- Onclusion and open problems

- A lattice $\Lambda \subseteq \mathbb{R}^n$
- A vector space $E \subseteq \mathbb{R}^n$

 $\Lambda \cap E$ is a lattice.

- A lattice $\Lambda \subseteq \mathbb{R}^n$
- A vector space $E \subseteq \mathbb{R}^n$

$\Lambda \cap E$ is a lattice.

The Intersect problem

Given Λ and E, how to compute a basis of $\Lambda \cap E$?

• Integer relation finding: $\Lambda = \mathbb{Z}^n$ and $E = \mathbf{x}^{\perp}$

Two more questions about lattices

- Is $\Lambda_1 + \Lambda_2$ a lattice ?
- How about $\pi(\Lambda, E)$?

Two more questions about lattices

- Is $\Lambda_1 + \Lambda_2$ a lattice ?
- How about $\pi(\Lambda, E)$?

Sum

$$egin{aligned} &\Lambda_1 = \mathbb{Z} \cdot (1,0) \subseteq \mathbb{R}^2, \ &\Lambda_2 = \mathbb{Z} \cdot (\sqrt{2},0) \subseteq \mathbb{R}^2, \ &\Lambda_1 + \Lambda_2 = \mathbb{Z}^2 \cdot egin{pmatrix} 1 & 0 \ \sqrt{2} & 0 \end{pmatrix}. \end{aligned}$$

Two more questions about lattices

- Is $\Lambda_1 + \Lambda_2$ a lattice ?
- How about $\pi(\Lambda, E)$?

Sum	Projection
$\Lambda_1 = \mathbb{Z} \cdot (1,0) \subseteq \mathbb{R}^2$,	$egin{array}{ccc} \Lambda = \mathbb{Z}^2 \cdot egin{pmatrix} 1 & 0 \ \sqrt{2} & 1 \end{pmatrix} \subseteq \mathbb{R}^2$,
$\Lambda_2 = \mathbb{Z} \cdot (\sqrt{2}, 0) \subseteq \mathbb{R}^2$,	$E=\mathbb{R}\cdot(1,0)\subseteq\mathbb{R}^2$,
$\Lambda_1+\Lambda_2=\mathbb{Z}^2\cdotigg(egin{array}{cc} 1 & 0\ \sqrt{2} & 0 \ \end{pmatrix}.$	$\pi(\Lambda,E)=\mathbb{Z}^2\cdot \left(egin{array}{cc} 1 & 0 \ \sqrt{2} & 0 \end{array} ight).$

Finitely generated additive subgroup of \mathbb{R}^m

FGAS

Given $\mathbf{a}_1,\,\cdots$, $\mathbf{a}_n\in\mathbb{R}^m$, we consider the set

$$\mathcal{S}(\mathbf{a}_i) = \sum_{i=1}^n \mathbb{Z} \mathbf{a}_i = \left\{ \sum_{i=1}^n z_i \mathbf{a}_i \colon \, z_i \in \mathbb{Z}
ight\} \subseteq \mathbb{R}^m.$$

Then S is a *Finitely Generated Additive Subgroup* of \mathbb{R}^m .

$$\mathcal{S}(\mathbf{a}_i) \longleftrightarrow \sum_{i=1}^\ell \Lambda_i \longleftrightarrow \pi(\Lambda, E)$$

Geometric interpretation

Geometric interpretation

Geometric interpretation

The closure of $\mathbb{Z}^3 \cdot \begin{pmatrix} 1 & 0 \\ \sqrt{2} & 0 \\ 1 & 1 \end{pmatrix}$ is $\mathbb{Z} \cdot (0, 1) \stackrel{\perp}{\oplus} \mathbb{R} \cdot (1, 0)$.

Theorem (Adapted from [Bourbaki '67, Chap. VII, Th. 2])

Given a fgas $S \subseteq \mathbb{R}^m$, its closure \overline{S} has the unique decomposition $\overline{S} = \Lambda + E$ with span $(\Lambda) \perp E$, and:

- Λ: a lattice,
- E: a vector space.

 $\downarrow \downarrow \downarrow$

The Decomp problem

Given a generating set of S, how to compute a basis of the lattice component of a fgas ?

The dual lattice of a lattice Λ :

$$\Lambda^* = \{ \mathbf{c} \in \mathsf{span}(\Lambda) \colon \forall \mathbf{b} \in \Lambda, \ \langle \mathbf{b}, \mathbf{c} \rangle \in \mathbb{Z} \}.$$

The dual lattice of a fgas S:

$$\mathcal{S}^* = \{ \mathbf{c} \in \mathsf{span}(\mathcal{S}) \colon \forall \mathbf{b} \in \mathcal{S}, \ \langle \mathbf{b}, \mathbf{c} \rangle \in \mathbb{Z} \}.$$

Property

If
$$\overline{\mathcal{S}}=\Lambda\oplus E$$
 with span $(\Lambda)\perp E$, then $\mathcal{S}^*=\Lambda^*$.

Link between Intersect and Decomp

Link between Intersect and Decomp

A new view on HJLS-PSLQ

$$\mathbb{Z}^n \cap \mathbf{x}^\perp = \pi(\mathbb{Z}^n, \mathbf{x}^\perp)^*$$

Outline

Background

2 A new view on HJLS-PSLQ

Observe the second s

Onclusion and open problems

Input: $A = (\mathbf{a}_i) \in \mathbb{R}^{n \times m}$ with $\max \|\mathbf{a}_i\| \leq X$, and $d = \dim(\Lambda)$.

Output: a basis of the lattice component Λ of the fgas spanned by A.

Input: $A = (\mathbf{a}_i) \in \mathbb{R}^{n \times m}$ with $\max \|\mathbf{a}_i\| \leq X$, and $d = \dim(\Lambda)$. Output: a basis of the lattice component Λ of the fgas spanned by A.

Input: $A = (\mathbf{a}_i) \in \mathbb{R}^{n \times m}$ with $\max \|\mathbf{a}_i\| \le X$, and $d = \dim(\Lambda)$. Output: a basis of the lattice component Λ of the fgas spanned by A.

Input: $A = (\mathbf{a}_i) \in \mathbb{R}^{n \times m}$ with $\max \|\mathbf{a}_i\| \le X$, and $d = \dim(\Lambda)$. Output: a basis of the lattice component Λ of the fgas spanned by A.

Complexity bound on Decomp_HJLS

Input: $A = (\mathbf{a}_i) \in \mathbb{R}^{n \times m}$ with $\max \|\mathbf{a}_i\| \leq X$, and $d = \dim(\Lambda)$. Output: a basis of the lattice component Λ of the fgas spanned by A.

 The number of loop iterations consumed by Decomp_HJLS is

$$\mathcal{O}\left(r^3+r^2\lograc{X}{\lambda_1(\Lambda)}
ight)$$
 ,

where $r = \operatorname{rank}(A)$.

• The number of real arithmetic operations consumed at each loop iteration is $\mathcal{O}(nm^2)$.

Outline

Background

- A new view on HJLS-PSLQ
- 3 Decomp using HJLS
- 4 Conclusion and open problems

Conclusion and open problems

Conclusion

- Exhibit a link between Intersect and Decomp
- Provide another view on HJLS-PSLQ
- Describe an algorithm for Decomp

Open problems

- To investigate the numerical stability
- To analyze the bit-complexity
- To develop algorithms that directly solve Intersect

Conclusion and open problems

Conclusion

- Exhibit a link between Intersect and Decomp
- Provide another view on HJLS-PSLQ
- Describe an algorithm for Decomp

Open problems

- To investigate the numerical stability
- To analyze the bit-complexity
- To develop algorithms that directly solve Intersect

