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Goals of this talk

To give a better understanding of
the HJLS and PSLQ algorithms

To propose an algorithm for a fundamental problem
on finitely generated additive subgroups of Rn
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Lattices

d -dimensional lattice ,
∑

i≤d Zbi
for linearly indep. bi ’s in Rn ,
referred to as lattice basis.
Bases are not unique when d ≥ 2,
but related one another by integer
transforms with determinant ±1.

A lattice is also a discrete additive
subgroup of Rn .

λ1(Λ) = min{‖b‖2 : b ∈ Λ \ 0}.

b1
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·
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4 2
−3 4
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.
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Integer relation finding

The problem
An integer relation m ∈ Zn \ 0 for x ∈ Rn satisfies

〈m,x〉 = 0.

Does there exist any? Find one/all.

Let Λx := Zn ∩ x⊥. Then Λx is a lattice.

Application
For α, find f (x ) ∈ Z[x ] such that f (α) = 0.
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A brief history of integer relation finding

Ferguson and Forcade ’79
LLL: Lenstra, Lenstra and Lovász ’82
HJLS: Håstad, Just, Lagarias and Schnorr ’89
PSLQ: Ferguson, Bailey and Arno ’99

Remark
Essentially, PSLQ is equivalent to HJLS.
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Motivation of the present work

“... Ferguson and Forcade’s generalization,
although much more difficult to implement (and
to understand), is also more powerful...” 1

1B. Cipra ’00. The best of the 20th century: Editors name top 10 algorithms.
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The HJLS-PSLQ algorithm [HJLS89, FBA99]

Input: x = (xi) ∈ Rn with xi 6= 0.
Output: m ∈ Λx \ 0, or assert λ1(Λx ) ≥M .

1. Compute a lower trapezoidal
matrix Hx ∈ Rn×(n−1) whose
columns form a basis of x⊥.
Let H := Hx .

Partial Sums: s2
k =
∑n

j=k x 2
j n − 1

n
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The HJLS-PSLQ algorithm [HJLS89, FBA99]

2. While hn−1,n−1 6= 0 do
2.1. Choose r maximizing 2r · |hr ,r |2;

swap the r -th and (r + 1)-th rows of H ;
LQ decompose H .

2.2. Size-reduce the rows of H (s.t. |hi ,j | ≤ |hj ,j | /2 for i > j ).
[If hn−1,n−1 6= 0, then λ1(Λx ) > 1/max{hi ,i }.]

3. Return the last row of
U−T , where U is the
product of all transform
matrices.

hn−1,n−1 = 0

hn,n−1 6= 0

n − 1

n
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Some comments on HJLS-PSLQ

A generic description
1 Compute Hx .
2 Reduce the rows of Hx .
3 Return the last row of U−T .

Remarks
The rows of Hx may not form a lattice.
Global swap condition.
U−T & duality.
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The Intersect problem

A lattice Λ ⊆ Rn

A vector space E ⊆ Rn

Λ ∩E is a lattice.

The Intersect problem
Given Λ and E , how to compute a basis of Λ ∩E ?

Integer relation finding: Λ = Zn and E = x⊥
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Two more questions about lattices

Is Λ1 +Λ2 a lattice ?
How about π(Λ,E ) ?

Sum

Λ1 = Z · (1, 0) ⊆ R2,

Λ2 = Z · (
√

2, 0) ⊆ R2,

Λ1 +Λ2 = Z2 ·
 1 0√

2 0

.

Projection

Λ = Z2 ·
 1 0√

2 1

 ⊆ R2,

E = R · (1, 0) ⊆ R2,

π(Λ,E ) = Z2 ·
 1 0√

2 0

 .
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Finitely generated additive subgroup of Rm

FGAS
Given a1, · · · , an ∈ Rm , we consider the set

S(ai) =
n∑

i=1

Zai =

{
n∑

i=1

ziai : zi ∈ Z

}
⊆ Rm .

Then S is a Finitely Generated Additive Subgroup of Rm .

S(ai)←→ ∑̀
i=1

Λi ←→ π(Λ,E )
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Geometric interpretation

Z3 ·


1 0
2 0
1 1

 = Z2.

b1

b2

b3
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Geometric interpretation

The closure of Z3 ·


1 0√
2 0

1 1

 is Z · (0, 1) ⊥⊕ R · (1, 0).

b1

b2

b3
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The Decomp problem

Theorem (Adapted from [Bourbaki ’67, Chap. VII, Th. 2])
Given a fgas S ⊆ Rm , its closure S has the unique
decomposition S = Λ+E with span(Λ) ⊥ E , and:

Λ: a lattice,
E : a vector space.

↓ ↓
The Decomp problem
Given a generating set of S, how to compute a basis of
the lattice component of a fgas ?
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The dual of a fgas

The dual lattice of a lattice Λ:

Λ∗ = {c ∈ span(Λ): ∀b ∈ Λ, 〈b, c〉 ∈ Z}.

The dual lattice of a fgas S:

S∗ = {c ∈ span(S): ∀b ∈ S, 〈b, c〉 ∈ Z}.

Property
If S = Λ

⊕E with span(Λ) ⊥ E , then S∗ = Λ∗.
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Link between Intersect and Decomp

The Intersect problem

Λ ∩E

m The key equation
Λ ∩E = π(Λ∗,E )∗

The Decomp problem

S = Λ+E
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Link between Intersect and Decomp

Λ
dual lattice−−−−−−−−→ Λ∗

Intersect
y y projection

Λ ∩E ←−−−−−−−−
dual lattice

π(Λ∗,E )

dual lattice
x y Decomp

Λ ′ ←−−−−−−−−−−−−
lattice component

Λ ′ ⊕E ′
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A new view on HJLS-PSLQ

Zn ∩ x⊥ = π(Zn ,x⊥)∗

Zn dual lattice−−−−−−−−→ Zn

Intersect
y y projection Hx

one element in
Zn ∩ x⊥ ←−−−−−−−−

dual lattice
π(Zn ,x⊥)

dual lattice
x y partially Decomp

mZ ←−−−−−−−−
latt. comp.

mZ⊕ ?
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Decomp_HJLS
Input: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).
Output: a basis of the lattice component Λ of the fgas spanned by A.

HJLS-PSLQ Decomp_HJLS

hn−1,n−1

n − 1

n

m

n
d

hn−1,n−1 = 0

hn,n−1 6= 0

n − 2

n

0

d

n
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Complexity bound on Decomp_HJLS
Input: A = (ai ) ∈ Rn×m with max ‖ai‖ ≤ X , and d = dim(Λ).
Output: a basis of the lattice component Λ of the fgas spanned by A.

The number of loop iterations consumed by
Decomp_HJLS is

O
(
r 3 + r 2 log

X
λ1(Λ)

)
,

where r = rank(A).
The number of real arithmetic operations consumed
at each loop iteration is O(nm2).
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Conclusion and open problems
Conclusion

Exhibit a link between Intersect and Decomp
Provide another view on HJLS-PSLQ
Describe an algorithm for Decomp

Open problems
To investigate the numerical stability
To analyze the bit-complexity
To develop algorithms that directly solve Intersect

Thanks
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