
Received May 4, 2020, accepted May 14, 2020, date of publication May 20, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996000

seIMC: A GSW-Based Secure and Efficient
Integer Matrix Computation Scheme
With Implementation
YANAN BAI1,2, XIAOYU SHI 3, (Member, IEEE), WENYUAN WU1,
JINGWEI CHEN1, AND YONG FENG1
1Chongqing Key Laboratory Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
Chongqing 400714, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
Chongqing 400714, China

Corresponding author: Yong Feng (yongfeng@cigit.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 11671377, in part by the Chongqing
Science and Technology Program under Grant cstc2018jcyj-yszxX0002 and Grant cstc2019yszx-jcyjX0003, in part by the Guizhou
Science and Technology Program under Grant [2020]4Y056, in part by the Chongqing Research Program of the Key Standard
Technologies Innovation of Key Industries under Grant cstc2017zdcy-zdyfX0076, in part by the Chongqing Research Program of
Technology Innovation and Application under Grant 2019jscx-zdztzxX0019, and in part by the Chongqing Natural Science Foundation
under Grant cstc2019jcyj-msxmX0638.

ABSTRACT As atomic operations, secure matrix-based computations using homomorphic encryption (HE)
have attracted much attention in cloud-based machine learning. However, most existing secure matrix
computation solutions that focus on HE schemes suffer efficiency loss as the size of the matrix, which
greatly limits their applications in the big data environment. To address these issues, this paper proposes
seIMC, an integer matrix computation scheme based on the Gentry-Sahai-Waters (GSW) scheme, to cope
with privacy protection and secure computation of large-scale data. In detail, we translate the GSW scheme
to encrypt an integer matrix modulo q (i.e., a large positive integer), and homomorphically compute matrix
addition and multiplication, which is a natural extension of HAO scheme. Besides, the correctness and
security analysis of seIMC are shown, and complexity analysis is also given in this study. Furthermore, the
proposed schemes are implemented, including public-key encryption and private-key encryption schemes.
Compared with existing secure matrix computation schemes, the proposed scheme performs better in
execution time. Finally, seIMC is applied to solve the problem of the number of ways in which any two
participants make friends through k steps in an encrypted social network. Experiments show that when
the cloud server processes an integer matrix of 1000 people with a security level of 90, namely, 1 million
data volumes, it only takes approximately 1.9 minutes for each homomorphic matrix multiplication. Hence,
the practicality of the proposed seIMC in privacy protection under a big data environment is highly proven.

INDEX TERMS Homomorphic encryption, matrix computation, machine learning, GSW encryption
scheme, big data, privacy protection.

I. INTRODUCTION
Fueled by the massive influx of data, extensive computational
resources and advanced machine learning algorithms, arti-
ficial intelligence (AI) applications such as automatic driv-
ing, face recognition and smart homes have quickly entered

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

people’s lives [1]–[3]. Dependent on the powerful compu-
tation and storage abilities of cloud computing, a growing
number of AI applications have migrated to the cloud to train
their model with large-scale datasets by renting cloud-based
machine learning services. In addition, increasing amounts
of data and individual privacy information are collected
and processed continuously in untrusted cloud servers [4].
Therefore, it poses a natural and important question on the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98383

https://orcid.org/0000-0002-4267-7795
https://orcid.org/0000-0001-7005-6489

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

cloud-based machine learning that whether we can store and
train such private data and model to the cloud environment in
a secure manner, e.g., this issue is extremely relevant in social
networks due to privacy concerns about individual sensitive
information. This is also the case in the field of biomedicine
concerning patients’ private data.

In this context, homomorphic encryption (HE) is one of
the most promising approaches for addressing this challenge
and receives much attention in both academic and indus-
try [5]–[7]. Compared to secure multiparty computation and
differential privacy technologies, homomorphic encryption
has obvious advantages in supporting noninteractive opera-
tions and saving on communication costs, allowing us to eval-
uate functions over encrypted messages directly to obtain the
same results as evaluating the corresponding plaintext [8], [9].
Based on these properties, AI applications integrated with
HE technologies can effectively defend against attacks
on data and models in untrusted third-party environments
(e.g., cloud environments).

Regarding HE, Rivest et al. [10] first proposed the concept
of privacy homomorphism in 1978 and adopted the homo-
morphism of encryption functions to protect data privacy.
Since then, cryptology researchers have carried out exten-
sive studies on homomorphic encryption [11]. For example,
Elgamal [12] proposed a homomorphic encryption scheme
that supports the multiplication operation. Paillier [13]
designed a public-key homomorphic encryption system based
on composite degree residuality classes, which can imple-
ment the addition operation on the encrypted data. These
above solutions are called partially homomorphic encryption
schemes (PHEs), which only support particular operations
(e.g., addition or multiplication) on encrypted data with a
limited number of times.

Until 2009, Gentry proposed the first plausible and achiev-
able fully homomorphic encryption scheme (FHE) [14],
which is based on the idea of mathematical lattices. How-
ever, it is a conceptually and practically unrealistic scheme.
To control the noise growth, FHE requires the refresh-
ing of ciphertexts frequently via bootstrapping technology,
which incurs a heavy extra computational cost. After that,
some bounded (leveled) FHE schemes (LHE) were proposed
to make FHE more practical. For example, Brakerski and
Vaikuntanathan proposed an efficient fully homomorphic
encryption from the standard learning with error (LWE) prob-
lem [15]. In 2014, Brakerski, Gentry and Vaikuntanathan
proposed the BGV [16] that utilizes the efficiency fea-
ture of the ring-learning with error (RLWE) problem to
build HE schemes. With the introduction of new techniques
(e.g., bit decomposition, module switching, key switching),
HELIB [17] is the implementation of the BGV scheme,
which uses the high-performance mathematical function
library NTL. These BGV-based solutions are deemed second-
generation HE schemes. However, these second-generation
HE solutions also bring extra computation costs due to unnat-
ural key switching. To address this issue, Gentry, Sahai and
Waters proposed GSW [18] that encrypts the plaintexts using

the approximate eigenvalues of the ciphertext matrix with the
eigenvector as the secret key. GSW can largely reduce the
unnecessary key switching brought by BGV-based solutions
since the ciphertext computation of GSW is based on the
matrix computation directly, which does not need to obtain
the user’s evaluation key. GSW-based solutions are called
the third-generation of HE schemes. Note that as the weaker
version of FHE, LHE can only support depth-bounded homo-
morphic operations (i.e., addition and multiplication) with-
out bootstrapping, but it is applicable in various scenarios
with reasonable performances. Hence, we focus on building
our solution on the LHE scheme [8]. Furthermore, in this
paper, we focus on constructing a secure and efficient integer
matrix computation solution from the third-generation of
HE schemes (i.e., GSW-based).

Currently, matrix-based computations are the core and
atomic operations for major AI applications. 1). The collected
data are often organized in the form of a matrix, which can
be found in many domains, e.g., social network services
dealing with friend relationships [19], the protein interaction
network in bioinformatics [20], business intelligence from
user-item rating data in recommendation systems [21], [34].
2). Various tasks are executed viamatrix-based computations,
such as massive data-based statistical analysis, the training
process of deep learning models, and the prediction task of
learned neural network models. 3). In the cloud environment,
the data are rarely organized in a bit matrix or an integer
vector, in most cases they are organized in a rational number
matrix. At the same time, in the allowable precision range,
the fraction can be converted into an integer for approximate
computation. Therefore, secure integer matrix computation
becomes an important issue in the cloud. As a result, it is
of great practical significance to establish an efficient and
feasible integer matrix homomorphic encryption scheme for
cloud-based machine learning.

Following this line, some secure matrix computation
schemes based on HE have been proposed. For example,
Wu and Haven et al. proposed a safety inner product method
on packed ciphertexts using the single-instruction-multi-data
(SIMD) approach [22]. It encrypts the rows or columns of
thematrix as vectors and computes the result using homomor-
phismmultiplication as the inner product of the two encrypted
vectors. Duong et al. [23] packed the target matrix into a
single ciphertext in polynomial form and then performed a
homomorphic multiplication on the packed ciphertext over
RLWE. Based on this method, Mishra et al. [24] built an
enhanced version of the secure matrix multiplication pro-
posed byDuong, but there are useless terms in the ciphertexts.
As a result, these useless terms in the plaintext polynomials
are eliminated by encrypting and recoding the plaintext infor-
mation; thus it is only suitable for a one-depth homomorphic
multiplication scenario, since it leads to a large expansion
rate of ciphertexts.To address it, Jiang et al. [25] presented
a novel matrix encoding method that can encrypt more than
one matrix in a single ciphertext and adapted an efficient
evaluation strategy for generic matrix operations via linear

98384 VOLUME 8, 2020

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

transformations. However, this method suffers efficiency loss
when dealing with large-scale data. Taking advantage of the
GSW scheme in which homomorphic addition and multi-
plication are just natural matrix addition and multiplication,
Hiromasa et al. [27] first conducted a GSW-FHE scheme for
matrix homomorphism computations (i.e., HAO) and opti-
mized the bootstrapping technique proposed by [26]. How-
ever, all these improvements target binary plaintext, which
greatly restricts its application in the real world.

To address the above issues, this paper proposes seIMC,
a novel GSW-based integer matrix computation scheme. Dif-
ferent from the original GSW scheme that encrypts a bit or an
integer into a ciphertext matrix, the seIMC directly encrypts
a whole plaintext matrix into a ciphertext matrix to reduce
the homomorphic computing time. The proposed scheme
extends the plaintext space of the HAO scheme, which can
encrypt not only the bit matrix but also the integer matrix
modulo q, where q is a large positive integer. In addition,
it supports the homomorphic computation of matrix addition
and multiplication. The main contributions of this paper are
as follows:

• We propose a secure and efficient GSW-based inte-
ger matrix computation scheme for public-key encryp-
tion and private-key encryption, where the matrix ele-
ment is an integer with modulo q. In detail, it includes
the encryption algorithm, decryption algorithm, and
generic homomorphic operations such as addition and
multiplication.

• We give the security proofs and correctness analysis of
the proposed scheme. Computational complexity anal-
ysis of the encryption, decryption and homomorphic
algorithms are also given.

• We conduct extensive experiments to evaluate the effi-
ciency of the proposed seIMC scheme in terms of
encryption, decryption and homomorphic operations.
Most importantly, we apply seIMC to solve the graph
theory problem in social networks.

The rest of this paper is organized as follows. Section II
gives the preliminaries. Section III describes the proposed
seIMC scheme in detail, and theoretical analyses are also
given. Section IV empirically evaluates seIMC. Section V
shows the application to social networks. Finally, Section VI
discusses and concludes this paper.

II. PRELIMINARIES
A. NOTATIONS
We use the symbol Q to denote the set of rational numbers,
and R is the set of real numbers, while N and Z are the sets
of natural numbers and integers, respectively. Let D be some
group, and P be some probability distribution, then we use

a
U
←− D to denote that a is chosen from D uniformly at

random, and use b
R
←− P to denote that b is chosen along

with P.
Assume that vectors are in column form and are written

using bold lower-case letters, e.g., x, where xi represents

the ith element of a vector x. We denote the `∞ norm
(i.e., the maximum norm) of the vector x by ‖x‖∞. The inner
product between two vectors is defined as <x, y >= xTy.
Similarly, we use bold capital letters to denote matrices,
e.g., X . For a matrix X ∈ Zm×n, ‖X‖∞ := maxi∈[n] {‖xi‖∞}
denotes the `∞ of X , where xi denotes the ith column vector
of X . Meanwhile, XT

∈ Zn×m denotes the transpose of X .
For matrices X ∈ Zm×n1 , Y ∈ Zm×n2 , [X |Y] ∈ Zm×(n1+n2)
represents the column concatenation of X with Y , while the
row concatenation of X ∈ Zm1×n with Y ∈ Zm2×n is

[
Y
X

]
∈

Z(m1+m2)×n.

B. THE LEARNING WITH ERRORS (LWE)
LWE is considered as one of the hardest problems to solve in
regular time, even when using advanced quantum computing
technology. It was first introduced by Regev [29]. The defi-
nition of the decisional version LWE is:
Definition 1 (DLWE): Given a security parameter λ, let

n := n(λ) be an integer dimension, q := q(λ) ≥ 2 be an
integer modulus, and χ := χ (λ) be an error distribution
over Z. Then, the DLWEn,q,χ is the problem to distinguish
the following two distributions:
• The first distribution: sample a tuple (ai, bi) from uni-
formly over Znq × Zq;

• The second distribution: when s
U
←− Znq, then a tuple

(ai, bi) is chosen by sampling s
U
←− Znq, ei

R
←− χ , and

setting bi :=< ai, s>+ei mod q.
The DLWEn,q,χ assumption is that the DLWEn,q,χ is
infeasible.

Regev reduced the hardness of worst-case lattice problems
such as GapSVPγ and SIVPγ to the DLWEn,q,χ prob-
lem. In detail, GapSVPγ has the problem of distinguishing
between the case in which the lattice has a vector shorter than
r ∈ Q and the case in which all the lattice vectors are greater
than γ · r . The hardness of SIVPγ is defined to find the set of
short linearly independent vectors in a lattice. The reductions
are described in Corollary 1.
Corollary 1 [29]–[31]: Let q = q(n) ∈ N be a power

of primes q := pr or a product of distinct prime numbers
q := 5iqi such that qi :=poly(n) for all i, let α ≥

√
n
/
q.

If there is an efficient algorithm that solves the (average-case)
DLWEn,q,χ problem, then:
• There is an efficient quantum algorithm that solves
GapSVPÕ(n/α) and SIVPÕ(n/α) in the worst-case for
any n-dimensional lattices.

• If an addition q ≥ Õ
(
2n/2

)
, there exists an efficient clas-

sical algorithm to solveGapSVPÕ(n/α) in the worst-case
for any n-dimensional lattices.

C. HOMOMORPHIC ENCRYPTION, CIRCULAR SECURITY
An HE scheme consists of four algorithms, HE = (Keygen,
Enc, Dec, Eval), and is illustrated as follows:
• KeyGen(1λ): it returns a secret key sk, a public key pk
and a public evaluation key evk.

VOLUME 8, 2020 98385

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

• Encpk(m): it encrypts a plaintext m ∈M into a cipher-
text c ∈ C by using public key pk.

• Decsk(c): it recovers the original plaintext m from the
ciphertext c via the secret key sk.

• Evalevk(f , c1, . . . , ck): using the evaluation key evk,
the ciphertext c ∈ C can be computed by using the
function f :Mk

→M to c1, . . . , ck.

To prove the security of an HE scheme, we introduce a special
kind of circular security as follows.
Definition 2 (Circular Security): Denote κ as the keyspace

defined by the security parameter λ, and M and C are the
plaintext and ciphertext space, respectively. f is a function
from M to C. For all probabilistic polynomial-time adver-
saries A, the homomorphic encryption scheme HE = (Key-
gen, Enc, Dec, Eval) is circular security with respect to f
when the advantage of A can be negligible in the following
games:

• A challenger calculates (pk, sk, evk) ← KeyGen(1λ)
and selects a bit b← {0, 1};

• Define the function f+ as M × M → M, and
f+(x, y):= x + y ∈M; then, the challenger computes a
ciphertext c∗ as follows and sends c∗ to A.

c∗ :=

{
Evalevk(f+,Encpk(0), f (sk)) if b = 0
Encpk(0) ∈ C otherwise

(1)

• A outputs a guess b′ ∈ {0, 1}

The advantage of A is Pr[b = b′]− 1/2.

D. GSW SCHEME
The original GSW scheme was proposed by Gentry, Sahai,
Waters [19]. It adopts the approximate eigenvector method
based on the plaintext space M to construct the ciphertext
space C. We first introduce the Gadget matrix G and the
randomized function G−1.
Lemma 1 [32]: Let matrix C ∈ Zn×mq , there is a fixed and

primitive matrix G ∈ Zn×n`q and a deterministic, randomized

function G−1 : Zn×mq → Zn`×mq such that X
R
←− G−1 (C)

is sub-gaussian with parameter O(1) and always satisfies
GX=C.
Let ` =

⌈
log2 q

⌉
, gT = (20, 21, . . . 2`−1), and In be

the n × n identity matrix, we define the Gadget matrix as
G:=In⊗ gT ∈ Zn×n`q , where ⊗ is the tensor multiplication
operation. The definition of sub-gaussian distribution can be
found in [26].

For example, let ` = 3, n = 2, q = 8, G=I2 ⊗ (20, 21,

22) =
[
1 2 4 0 0 0
0 0 0 1 2 4

]
∈ Z2×6

8 . If C=[6 7]T ∈ Z2×1
8 , then

G−1(C)=[0 1 1 1 1 1]T ∈ {0, 1}6×1,GG−1(C)= [6 7]T =C.
Next, we introduce the GSW scheme variant from [26],

which is identical to the original GSW scheme except for
the introduction of the Gadget matrix G and the randomized
function G−1, as well as some syntactic differences. The
encryption algorithm can be further divided into the public-
key encryption algorithm [33] and the private-key encryption

algorithm [26]. The private-key encryption scheme can be
described as follows:
• Setup(λ, L): Given the security parameter λ and the
circuit multiplication depth L, let n := n(λ) be an integer
dimension, q := q(λ) ≥ 2 be an integer modulus, and
χ := χ (λ) be a sub-gaussian error distribution over Z.
Output params= (n, q, χ , `, G).

• KeyGen(params): Samples s̄
R
←− χn−1, output the

secret key s = [s̄ |1] ∈ Zn.
• Enc(params, s̄, µ ∈ Zq): C̄

U
←− Z(n−1)×n`q , e

R
←− χn`.

Let bT =
[
eT − s̄T C̄

]
q, output the ciphertext

C =

(
C

bT

)
+ µG (2)

• Dec(params, s, C): For q = 2`, select the last ` columns
of C as C(`). Then, sTC(`) = µ · gT + e′, where e′ is the
error vector. Recover the Least Significant Bit LSB(µ)
from (µ− LSB (µ)) · 2`−2 + e′`−2, where e

′
i is the ith

element of e′.
The correctness of the GSW scheme can be guaranteed by
Lemma 2.
Lemma 2 [18], [33]: For security key s, plaintext µ ∈ Zq,

and the ciphertext C ∈ Zn×n`q , let the noise term be eT

such that sTC−µsTG= eT mod q. If
∥∥eT∥∥

∞
< q/8, then

Dec(params, s, C) can decrypt µcorrectly.
Since a fresh ciphertext is justµG plus a matrix of n` inde-

pendent LWE samples under secret s̄, the IND-CPA security
of the above scheme follows from the assumed hardness of
the DLWEn−1,q,χ , where C is pseudorandom by assumption
and hence hides µG.
Note that the process of the public-key encryption scheme

is similar to that of the private-key scheme, and the security of
the public-key scheme follows directly from Lemma 1 in [18].

III. PROPOSED seIMC SCHEME
In this section, we first propose a secure and efficient matrix
computation scheme via homomorphic encryption, and then
present the security proofs and complexity analysis of the pro-
posed scheme. Finally, the correctness proof and efficiency
analysis of the proposed scheme are also given.
As the third-generation of HE schemes, GSW realizes

the encryption of plaintext as bits and integers modulo q.
Hence, it is natural to pack plaintexts as vectors or matrices
for encryption. In [27], it was demonstrated that a simple
extension of plaintext space from bits to binary vectors cannot
yield plaintext-slot-wise homomorphic operations (e.g., addi-
tion and multiplication). However, homomorphic plaintext-
slot-wise operations can be supported by constructing matri-
ces to store binary vectors in their diagonal entries. Based
on this storage they constructed a matrix-based homomor-
phic encryption scheme HAO, which supports homomor-
phic binary matrix addition and multiplication. To extend
the plaintext space of the HAO scheme to meet the require-
ments of large-scale AI applications in the real world, we

98386 VOLUME 8, 2020

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

FIGURE 1. The overview of the seIMC public-key scheme.

construct the homomorphic integer matrix encryption scheme
that encrypts integer modulo q, where q is a large positive
integer.

The proposed seIMC public-key scheme is described
in Fig. 1. It gives an example of a secure cloud computing
organization. There are two sides: the data owner and the
cloud server. By calling the functions seIMC.Setup() and
seIMC.KeyGen(), the data owner first generates a key pair
(i.e., the secret-key sk and the public key pk) with a specified
cryptographic security parameter λ and the multiplication
depth of circuit L. Then, the data owner uses the pk to encrypt
plaintext data M with size of (r + 1) × (r + 1) by calling
seIMC. PubEnc(), where only the data owner knows the sk.
After that, the data owner sends the encrypted data to the
cloud server, where the data are always kept in encrypted
form C. In addition, the data owner also sends the function f()
to the cloud server if he needs some data that satisfy certain
conditions. Taking advantage of the GSW-based scheme with
the approximate eigenvector method, the data owner does not
need to create and send the evaluation key (evk) to the cloud
server to support homomorphic operations. The cloud server
receives the encrypted dataCwithout sk and function f() from
the data owner, and produces the necessary computations
f(C) by calling seIMC. Evaladd() or seIMC. Evalmult Then,
result C′ is sent to the data owner as a response. When the
data owner receives the result C′, he can decrypt the C′

that satisfies the function f() by calling seIMC. Decrypt()
withDecOneNum() and using the sk.

A. CONSTRUCTION OF THE seIMC SCHEME
In seIMC, for an integer modulus q, we let Zq = Z/qZ
denote the quotient ring of integers modulo q. s is the column
vector of the secret key matrix S and e is the column vector of
the noise matrix E. A and R are uniformly random matrices.
B and P denote the public key matrices. LetM ∈ Zr×rq be the
plaintext matrix with size r × r in Zq.

1) PARAMETERS SETUP ALGORITHM: SETUP()
Given the security parameter λ and the multiplication depth
of circuit L, we let ` =

⌈
log2 q

⌉
and the integer modulus

q = q(λ, L):=2`. The lattice dimension n = n(λ, L) and
the noise distribution χ = χ (λ, L) over Z that are assumed
to be sub-gaussian. Then, let m = m(λ, L):=O((n + r)`),
N := (n + r)`, and G = gT ⊗ In+r ∈ Z(n+r)×N

q , where

gT = {20, 21, . . . , 2`−1}. The output of Setup(λ, L) is
params=(n, q, χ , m).

2) KEY GENERATION ALGORITHM: KEYGEN()

We sample matrix S̄
R
←− χ r×n, and denote Ir as the r × r

identity matrix, then the secret key matrix sk is computed by:

S = [Ir ‖ −S] ∈ Zr×(n+r)q (3)

For the public key matrix pk, we sample a uniformly random

matrixA
U
←− Zn×mq and a random noise matrixE

R
←− χ r×m;

then, the public key matrix can be computed by:

B :=

(
SA+ E

A

)
∈ Z(n+r)×mq (4)

LetM (i,j) ∈ {0, 1}r×r (i, j = 1, . . . , r) denote the matrix with
1 in the ith row and jth column and 0 in the others. For all

i, j = {1, . . . , r}, we sample R(i,j)
U
←− {0, 1}m×Nuniformly,

then compute

P(i,j) := BR(i,j) +
(
M (i,j)S

0

)
G ∈ Z(n+r)×Nq (5)

Finally, the output of KeyGen(params) is sk:=S, pk:=
{(P(i,j), B)‖1 ≤ i, j ≤ r}.

3) ENCRYPTION ALGORITHMS: SECENC() AND PUBENC()
To meet the requirements of the encryption algorithm in
different scenarios, we conduct the public-key encryption
algorithm (i.e., PubEncpk(M)) and private-key encryption
algorithm (i.e., SecEncsk(M)).

• SecEncsk(M): Sample the random matrix Ā
U
←− Zn×Nq

and E
R
←− χ r×N ; then, the ciphertext C can be com-

puted by:

C :=

(
SA+ E

A

)
+

(
MS
0

)
G ∈ Z(n+r)×Nq (6)

• PubEncpk(M): Sample a random matrix R
U
←−

{0, 1}m×N ; then, the ciphertext C can be computed by:

C := BR+
r∑
i=1

r∑
j=1

M [i, j] · P(i,j) ∈ Z(n+r)×Nq (7)

where M [i, j] denotes the element of M in the ith row
and jth column.

4) DECRYPTION ALGORITHMS: DECRYPT()
Note that for the public-key and private-key encryption algo-
rithms, the decryption algorithms are the same. Let C be the
input of Dec(), then the output is the plaintext M. In detail,
the decryption processing can be described as follows:

Step 1: compute the matrix H as

H = SC = MSG+ E ∈ Zr×Nq (8)

according to (6) or (7).

VOLUME 8, 2020 98387

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

Algorithm 1 Pseudocode of function DecOneNum()
Input: params and vector γ = (γ0, . . . , γ`−2)
Output: integer µ
1: x0 = round(γ`−2/2`−2) mod 2;
2: µ = x0, η = 0, ζ = 0;
3: For (i = 1; i <= `− 2; i++)
4: ζ = η/2+ 2`−3x0 mod q;
5: x ′ = round((γ`−2−i − ζ)/2`−2) mod 2;
6: µ = µ+ 2ix mod q;
7: η = ζ ;
8: x0 = x ′;
9: End For
10: return µ

Step 2: pack the first r` columns of H as H′ ∈ Zr×r`q and
denote the noise matrix E′ ∈ Zr×Nq as the first r` columns
of E. Then, we can obtain that H′ = E′+, as shown at the
bottom of this page.

Step 3: recover each element in the plaintext matrix
M (i.e., M [i, j] =

∑`−2
k=0 2

k
· xk , where xk denotes the

k-bit of x via the function DecOneNum(γ , params).
In detail, the functionDecOneNum(H′ [i, j` : (j+ 1) `− 2],
params) works as described in Algorithm 1, where vector
H′ [i, j` : (j+ 1) `− 2] represents the values in ith row of
H′ with columns from j`th to ((j+1)`-2)th. For example, set
i = 0 and j = 0, i.e., the input ofDecOneNum() isH′[0, 0:(l-
2)], and then the output will be M[0, 0]. Based on this, we can
recover all elements ofM by iteratively using DecOneNum

5) HOMOMORPHIC MATRIX OPERATIONS: EVAL()
For the ciphertext matrices C1 ∈ Z(n+r)×Nq and C2 ∈

Z(n+r)×Nq , homomorphic addition (i.e., EvalAdd (C1, C2)) is
defined as:

Cadd := C1 + C2 ∈ Z(n+r)×Nq (9)

For homomorphic multiplication (i.e., EvalMult(C1, C2)),
G−1(C2) ∈ {0, 1}N×N is computed first, and then outputs:

C1G−1(C2) ∈ Z(n+r)×Nq (10)

B. SCHEME ANALYSIS
1) CORRECTNESS ANALYSIS
The correctness of seIMC in the form of a public-key scheme
and private-key scheme can be guaranteed by Lemma 3 and
Lemma 4, respectively.
Lemma 3: In the case of the public-key scheme, if the

plaintextM∈ Zr×rq can be encrypted to ciphertext C with the

noise matrix E
R
←− χ r×m such that (1+ ρ) ‖E‖∞ < q/8

and
r−1∑
j=0

r−1∑
i=0
|M [i, j]| = ρ, then the output of Decsk(C) isM.

Proof: According to (5) and (7), we know that SB =

[Ir‖ − S]
[
SA+E
A

]
= E,

r−1∑
i=0

r−1∑
j=0

M [i, j] ·M (i,j) = M then,

H = SC = S

BR+ r−1∑
i=0

r−1∑
j=0

M [i, j]P(i,j)


= S

BR+ r−1∑
i=0

r−1∑
j=0

M [i, j]
(
BR(i,j) +

[
M (i,j)S

0

]
G
)

= ER+ ER(i,j) +
r−1∑
i=0

r−1∑
j=0

M [i, j]S
[
M (i,j)S

0

]
G

= ER+
r−1∑
i=0

r−1∑
j=0

M [i, j]ER(i,j)

+

r−1∑
i=0

r−1∑
j=0

M [i, j][Ir
∥∥−S] [M (i,j)S

0

]
G

= E

R+ r−1∑
i=0

r−1∑
j=0

M [i, j]R(i,j)

+MSG (11)

where E

(
R+

r−1∑
i=0

r−1∑
j=0

M [i, j]R(i,j)

)
∈ Zr×Nq is the noise

term. If

∣∣∣∣∣E
(
R+

r−1∑
i=0

r−1∑
j=0

M [i, j]R(i,j)

)∣∣∣∣∣
∞

< q/
8 for all i,

j ∈ {0, . . . , r − 1}, then it can be decrypted correctly

when the following is satisfied:
r−1∑
j=0

r−1∑
i=0
|M [i, j]| = ρ, then

(1+ ρ) ‖E‖∞ < q/8, according to Lemma 2.
Lemma 4: In the case of the private-key scheme, if a

plaintextM∈ Zr×rq is encrypted to a ciphertext C with noise
matrix E such that ‖E‖∞< q/8, then Decsk(C) =M.

Proof:We have:

SC = S

([
SA+ E

A

]
+

[
MS
0

])
G

=
[
Ir
∥∥−S] [SA+ E

A

]
+
[
Ir
∥∥−S] [MS

0

]
G

= E+MSG (12)

According to Lemma 2, we know that if ‖E‖∞ < q/8, then
the private-key scheme can be decrypted correctly.

 M [0, 0] 2M [0, 0] · · · 2`−1M [0, 0] · · · · · · M [0, r − 1] 2M [0, r − 1] · · · 2`−1M [0, r − 1]
...

...
...

...
...

...
...

...
...

...

M [r − 1, 0] 2M [r − 1, 0] · · · 2`−1M [r − 1, 0] · · · · · · M [r − 1, r − 1] 2M [r − 1, r − 1] · · · 2`−1M [r − 1, r − 1]


98388 VOLUME 8, 2020

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

For homomorphic multiplication, let S ∈ Zr×Nq be the
private key matrix, R ∈ Zm×Nq and E ∈ Zm×Nq , we have:

SC1C2

= SC1G−1 (C2)

= E1

R1+

r−1∑
i=0

r−1∑
j=0

M1[i, j]·R1,(i,j)

G−1 (C2)+M1SC2

= E1

R1 +

r−1∑
i=0

r−1∑
j=0

M1[i, j] · R1,(i,j)

G−1 (C2)

+M1E2

R2 +

r−1∑
i=0

r−1∑
j=0

M2[i, j]·R1,(i,j)

+M1M2SG

(13)

let
r−1∑
i=0

r−1∑
j=0
|M1 [i, j]| = ρ1,

r−1∑
i=0

r−1∑
j=0
|M2 [i, j]| = ρ2.

In Lemma 3, we know that if N (1+ ρ1) · ‖E1‖∞ +

(1+ ρ2) ‖M1E2‖∞ < q/8, the homomorphic multiplication
can be decrypted correctly. From the above analysis, the size
of noise is related not only to the size of matrices E1, andM1
E2 but also to ρ1 and ρ2.

In the case of the private-key encryption scheme, we have:

SC1C2 = SC1G−1(C2)

= (E1 +M1SG)G−1(C2)

= E1G−1(C2)+M1SC2

= E1G−1(C2)+M1(E2 +M2SG)

= E1G−1(C2)+M1E2 +M1M2SG (14)

Similarly, it can decrypt the plaintextM1 M2 correctly when
the absolute value of any element in E1G−1(C2)+M1E2 is
less than q/8. Hence, the size of the noise is dependent on E1,
M1E2 and C2.

For the homomorphic addition of the private-key encryp-
tion scheme, if

∥∥E(1) + E(2)∥∥
∞
< q/

8, we can decrypt the
plaintext M(1)

+M(2) correctly due to S(C1 + C2) = E1 +
E2 + (M1 + M2) SG. Furthermore, the noise of ciphertext
increases linearly with the number of ciphertexts. The same
analysis also works on the public-key encryption scheme.

2) SECURITY ANALYSIS
We prove that the encryption scheme defined above is
IND-CPA secure under the LWE hardness assumption.
Theorem 1: For any adversary A, there exists an

adversary B such that AdvCPA(A) ≤ 2 · AdvLWE (B).
Proof:

Game0(G0): IND-CPA security experiment. According to
the proposed scheme, challengerC first initializes the encryp-
tion scheme and then generates a public key pk:={(P(i,j),
B)‖1 ≤ i, j ≤ r} and a private key sk:=S. The adversary
Aobtains the public key of the scheme and selects two chal-
lenge plaintexts m0 and m1 from the plaintext space, then
sends them to challenger C . Challenger C selects b ∈ {0, 1}

at random and encrypts mb using the public key. After that,
the ciphertext is sent to the adversary A. The adversary
guesses the plaintext corresponding to the ciphertext and
outputs b′. If b′ = b, the adversary attacks successfully, and
the advantage of adversary A is recorded as: AdvCPA[A] =
|Pr[b = b′ in game G0]− 1/2|.
Game1(G1): In Game1, the public key B :=

[
SA+E
A

]
which is used in Game0 is substituted by a uniform random

value B′
U
←− Z(n+r)×mq . It is possible to verify that there

exists an adversary B with the same running time as that of
A such that |Pr[b = b′ in game G1]−Pr[b = b′ in game
G0]| ≤ AdvLWE (B), because distinguishing B and B’ for
adversary B is as hard as solving LWE problem. Meanwhile,
the other public key value P(i,j) used in Game0 is also sub-

stituted by a uniform random value P′(i,j)
U
←− Z(n+r)×Nq .

According to the game of Definition 2 in Section II.C, it is
possible to verify that there exists an adversary B with the
same running time as that of A such that |Pr[b = b′ in
game G1]−Pr[b = b′ in game G0]| ≤ AdvLWE (B), since
AdvDefine2[A] =

∣∣Pr[b = b′]− 1/2
∣∣ = negl(λ).

Game2(G2): In Game2, the value in the generation of

the challenge ciphertext C := BR +
r∑
i=1

r∑
j=1

M [i, j] · P(i,j)

is substituted with uniform random elements in the matrix
C′

U
←− Z(n+r)×Nq in Game1. The adversary distinguishes

betweenC′ andC is as difficult as theLWE problem, so there
exists an adversary B with the same running time as that
of A with |Pr[b = b′ in game G2] − Pr[b = b′ in game
G1]| ≤ AdvLWE (B). Note that in Game2, the values inCfrom
the challenge ciphertext are independent of bit b; therefore,
Pr[b = b′ in game G2] = 1/2.

In summary, AdvCPA(A) ≤ 2 · AdvLWE (B).

3) COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of
the seIMC, including encryption, decryption and homomor-
phic computation.

For the public-key encryption algorithm (i.e., seIMC.
PubEnc()), let m = N = (n + r)`; then, the computational
complexity of the first term in (7) is O((n + r) × N × m) =
O((n+r)3`2), and the second term isO(r×r×(n+r)×N) =
O(r2(n + r)2`). Hence, the total computation complexity of
seIMC. PubEnc()is O((n+ r)3`2) +O(r2(n+ r)2`).
For the private-key encryption algorithm (i.e., seIMC.

SecEnc()), the computational complexity of (6) is O(r × n×
N)+ O((n+ r)2 × N).
For the decryption algorithm (i.e., seIMC. Dec()), let S ∈

Zr×(n+r)q andC ∈ Z(n+r)×Nq , the computational complexity of
H=SC isO(r2(n+r)`), since it only uses the first r` columns
of C, instead of all the columns of C. Then, we recover the
plaintextM by calling the functionDecOneNum() iteratively,
and the computational complexity of this step is O(r2`).
In summary, the total computational complexity of seIMC.
Dec() is O

(
r2 (n+ r) `

)
+ O

(
r2`
)
≈ O

(
r2 (n+ r) `

)
.

VOLUME 8, 2020 98389

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

FIGURE 2. Time cost on the seIMC Private-key scheme with fixed r = 8
(Note that the y-axes is base 2.)

For the homomorphic operations of seIMC, we set the
ciphertextC ∈ Z(n+r)×Nq andN = (n+r)`, the computational
complexity of seIMC. Add() is O((n + r)2`). The seIMC.
Mul() has two operations: calculation of the matrix G−1 and
matrix multiplication. The computational complexity of the
former isO((n+r)`2), while that of the latter isO((n+r)3`2).
Therefore, the total computation complexity of seIMC.Mul()
is O

(
(n+ r) `2

)
+ O

(
(n+ r)3 `2

)
≈ O

(
(n+ r)3 `2

)
.

IV. IMPLEMENTATION
A. EXPERIMENTAL SETTING
We conduct our implementations on the cloud server hosted
at the Chongqing Institute of Green and Intelligent Tech-
nology, Chinese Academy of Sciences. It is equipped with
one Intel Xeon(R) E5-2680 2.4 GHz processor with 8 cores
and 256 GB RAM. The operation system is Ubuntu 16.04.
and the proposed seIMC scheme is written in Python 2.7.
Furthermore, all the experiments are performed in sequence.
To obtain a fair result, all the experiments are run 20 times
independently, and the average value is taken as the final
result.

For the LWE issue, we set a fixed parameter q = 230,
the noise follows the sub-gaussian distribution with the
variance var = q/8m, where m = (n + r)logq, and
` = logq = 30.

B. VERIFICATION OF COMPLEXITY ANALYSIS
We first validate the complexity analysis of the proposed
seIMC scheme with varying LEW parameter n. Fig. 2 shows
the run time of each algorithm in the seIMC private-key
scheme with varying LWE parameter n and fixed r = 8.
From Fig. 2, we can see that the time increase ratio of each

algorithm in the seIMC private-key scheme is proportional
to the dimension of LEW (i.e., n) with fixed r . In detail,
the slope of the encryption algorithm is approximately
2.55 < 3, which is consistent with the computational com-
plexity of the encryption algorithm in the theoretical analysis

(i.e., O((n+ r)3`)). Similarly, the growth ratio of the decryp-
tion algorithm conforms to the theoretical analysis results
as well, since the slope of the decryption algorithm curve
is 0.09 and the computational complexity of the decryption
algorithm isO(r2(n+r)`). For the homomorphic addition and
multiplication of seIMC, the growth ratios of each algorithm
are 1.77 and 2.62, respectively, which are also satisfied by the
computational result in the theoretical analysis (i.e., O((n +
r)2`) and O((n+ r)3`2)). Hence, the correctness of the com-
putational complexity is verified, both from the perspective
of the experiment and theory. Furthermore, Fig. 2 concludes
that the homomorphic multiplication algorithm in seIMC is a
time-consuming operation as it includes the computation of
G−1 and matrix multiplication operations. Next, the encryp-
tion algorithm is nearly proportional to O(n3) with fixed r and
`. Then, the homomorphic addition algorithm is proportional
to O(n1.77) The run time of the decryption algorithm is the
shortest in the seIMC scheme and is proportional to O(n0.09).

C. IMPLEMENTATION EFFICIENCY COMPARISON
The implementation efficiency of seIMC is tested and
compared with the state-of-art security matrix computation
schemes (e.g., original GSW scheme [18], HAO scheme [27]
and Jiang’s scheme [25]). Due to the lack of a ready-made
code base of GSW, we implement the GSW scheme proposed
in [18] by using Python program. In detail, matrix encryp-
tion and decryption are performed by iteratively encrypting/
decrypting the elements of the matrix, while the homomor-
phic operation is realized by transforming each element of
the ciphertext matrix into a vector; then, it is calculated
sequentially. The implementation efficiency of seIMC, HAO
and GSW with different n and r values are shown in Table 1.
Please note that the matrix operations are executed by using
the Numpy library, which is a fundamental package for sci-
entific computing in Python.
Table 1 shows that the proposed seIMC scheme outper-

forms the original GSW scheme and HAO scheme in both
encryption and decryption. For example, when n = 128
and r = 40, the encryption time and decryption time of
the original GSW scheme are 41382.4s and 369.7s, respec-
tively, while those of the seIMC private-key scheme are only
0.96s and 0.0017s, respectively. Even for the seIMC public-
key scheme, it takes only 7.62s and 0.16s on encryption
and decryption, respectively. For HAO, it spends 6.897s to
finish the encryption task and 0.588s to complete decryption.
Hence, it demonstrates that the implementation efficiency of
the seIMC scheme is significantly higher than that of the
original GSW scheme and HAO scheme. Furthermore, the
seIMC private-key scheme performs better than the public-
key scheme in terms of run time.
To compare the efficiency of the homomorphic operations,

we conduct a set of experiments with fixed n = 32 and
varied r . The time taken for the homomorphic operations for
seIMC, HAO, and GSW are shown in Table 2 and Table 3.
Table 2 and Table 3 show that the time cost of the GSW
scheme increases significantly as the data size increases.

98390 VOLUME 8, 2020

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

TABLE 1. Time Cost Comparison of Encryption and Decryption with
variant parameters.

Taking homomorphic addition as an example, the encryption
time of GSW is only 3.42s for the 2× 2 matrix, whereas the
encryption time of the 4 × 4 matrix is 13.48s. For the 8 × 8
matrix, the encryption time increases to 54.52s. When the
size of the matrix increases to 128 × 128, it takes 13682.9s
to perform the homomorphic addition operation. The same
scenario also occurred for the homomorphic multiplication
operation. For HAO, it takes 39.31s and 93.27s to execute
homomorphic addition and multiplication operations, respec-
tively, when the matrix size is 128 × 128, while it only
costs approximately 0.8s and 0.82s for seIMC. Therefore,
the proposed seIMC also outperforms the original GSW and
HAO in terms of homomorphic operations. The reasons for
this outperformance are as follows: 1) The original GSW
suffers from the ciphertext space expansion issue, which
encrypts each element (i.e., bit or integer) of the matrix into
a ciphertext matrix. 2) The HAO scheme is only suitable for
the bit matrix. It first needs to transform the integer matrix
into a binary matrix, which leads to a low efficiency due
to a large expansion rate of ciphertext and a sharp increase
in the amount of homomorphic computation. Compared to
the original GSW and HAO, the seIMC directly encrypts the
whole plaintext matrix into a ciphertext matrix in the form
of an integer. Therefore, the seIMC private-key scheme is
more suitable for large-scale data processing under privacy
protection in realistic scenarios.

Finally, we test the performance of seIMC compared with
Jiang’s scheme [25], it is a newly HE-based secure matrix
computation scheme that includes a novel matrix encoding
method and an efficient evaluation strategy for basic matrix

TABLE 2. Time taken comparison of homomorphic addition.

TABLE 3. Time taken comparison of homomorphic multiplication.

operations (e.g., matrix addition and multiplication). It has
been demonstrated that the implementation of efficient homo-
morphic matrix multiplication in [25] outperforms other
existing schemes, such as [22][23]. We set the security level
of seIMC and Jiang to 80 in this experiment. The cyclotomic
ring dimension of seIMC is chosen as n = 450 to achieve at
least an 80-bit security level against the known attacks of the
LWE problem, based on the estimator of Albrecht et al. [33].
The parameter settings of Jiang’s scheme are the same as
in [25]. The results are shown in Table 4. Clearly, the running
times of Jiang’s scheme are faster than those of the seIMC in
terms of encryption and homomorphic addition operations.
However, the performance of seIMC is better than Jiang’s
scheme in the following aspects: In the case of homomorphic
multiplication, the execution efficiency of seIMC is higher
than that of Jiang’s schemewhen dealingwithmatrices of size
r greater than 32. Furthermore, Jiang’s scheme fails to cope
with the large-scale matrix (e.g., r = 128 or 256 in Table 4).
2). The same phenomena also occurred in the decryption
algorithm. It means that the implementation efficiency of
jiang’s scheme is seriously declining with the matrix size
increases, while seIMC still enjoys a high efficiency even
if the matrix size expands. Therefore, it demonstrates that
seIMC is more suitable for real applications with large-scale
datasets.

V. APPLICATION TO SOCIAL NETWORK
In this section, we consider an untrusted cloud computing sce-
nario to test seIMC on encrypted large-scale social network
information. We propose a secure privacy data analysis solu-
tion in which data owners provide private social information
to a public cloud and the cloud server offers a large-scale data
analysis service to data owners who upload their encrypted
data. In this instance, the cloud server should learn nothing

VOLUME 8, 2020 98391

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

TABLE 4. Time cost of client and server with size.

about the private information of the data owners. As the
world’s largest online social network, Facebook allows users
to follow streams of posts generated by hundreds of their
friends and acquaintances. Clearly, the user’s friend circles
belong in their privacy information.

In this experiment, the social network dataset is obtained
from SNAP1 (Stanford Network Analysis Project). It collects
Facebook data and consists of 4,039 nodes and 88234 edges.
Each node represents an individual, and the edge denotes the
friend relation between two individuals. Note that the Face-
book data have been anonymized by replacing the Facebook-
internal ids for each user with a new value. Furthermore,
we format the undirect graph of Facebook as the adjacency
matrix A. For instance, A[i][j] represents whether user i and
user j are friends. If A[i][j]=1, a friend relationship exists
between user i and user j; otherwise, A[i][j]=0. The topology
is described as follows:

Step 1: The client encrypts the adjacency matrix A to E(A)
by his private key using seIMC. SecEnc(A), and then the
encrypted data E(A) is uploaded to public clouds via the
internet;

Step 2: The cloud server receives the encrypted data E(A)
and calculates the left multiplication of E(A) with K contin-
uously by using seIMC. Evalmult(E(A)). Then, it returns the
encrypted result Ek (A) to the client;
Step 3: The client receives the encrypted result Ek (A) and

uses the private key to decrypt it with seIMC. Dec(Ek (A)).
Finally, the client obtains Ak , and each element of Ak repre-
sents the number of ways to recognize other users in the social
network through k-times communication.

The implementation environment of seIMC is the same as
section V. In detail, we set q = 230 and n = 512; the noise is
a gaussian distribution with variance q/8m (i.e., var= q/8m),
m = (n+ r)logq, and ` = logq = 30. Besides, we also adopt
the Numpy library to accelerate the computation speed of
matrix operations. We take the first 1000 users in the dataset
(i.e., r = 1000) and call the seIMC private-key encryption
scheme. The estimated security parameter of the above set-
ting is 90, based on the estimator of Albrecht et al. [33]. The
time costs of encryption, decryption and homomorphic mul-
tiplication on client and cloud servers are shown in Table 5.

Instead of using the bootstrapping technology to flash
the ciphertext and compress the noise expansion, we set a

1http://snap.stanford.edu/data/

TABLE 5. Time cost of client and server with size.

smaller noise, according to the number of multiplication lay-
ers, to ensure correct decryption. Table 5 shows that seIMC
takes 78.25s and 34.95s to finish encryption and decryp-
tion, respectively. The left multiplication of encrypted social
matrix E(A) (i.e., the total number of matrix A is 1,000,000)
spends an average of 115.94 s on each homomorphic
multiplication.

The cloud server with the seIMC scheme can support not
only the power operation, but also the homomorphic addition
and subtraction operations for the statistical analysis. In addi-
tion, it is easy to modify the system to parallel execution to
improve the operation efficiency. Therefore, it is feasible to
apply the proposed integer matrix computation to protect and
process sensitive matrix data in theory and practice.

VI. CONCLUSION
To address the secure and efficient data analysis under pri-
vacy protection, this paper proposes a GSW-based integer
matrix computation scheme seIMC, which can guarantee
the security of data processing and has a high computa-
tional efficiency. It includes the public-key and private-key
encryption schemes. Furthermore, we also present the cor-
rectness and security proof of the proposed seIMC. Then,
we evaluate the performance of the proposed seIMC in
terms of efficiency, compared to the state-of-art schemes
(i.e, GSW,HAO and Jiang’s scheme). Finally, to solve the
problem of the number of ways in which any two participants
made friends throught k steps in an encrypted social network,
we apply the seIMC private-key encryption scheme to the col-
lected Facebook dataset with 1000 users. When the security
level is 90, the serial encryption and decryption algorithm
took approximately 1.3 minutes and 0.6 minutes, respec-
tively; and homomorphic multiplication took approximately
1.9 minutes. Experiments showed that the proposed private-
key encryption scheme can be effectively applied to pri-
vacy protection and secure data processing of integer matrix
modulo q.

98392 VOLUME 8, 2020

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

In future work, we plan to further expand the plaintext
space and homomorphic operations for a wide range of appli-
cations in realistic scenarios.

REFERENCES
[1] A. Botta, ‘‘Integartion of cloud computing and Internet of Things: A

survey,’’ Future Gener. Comput. Syst., vol. 56, pp. 684–700, Mar. 2016.
[2] E. Awad, S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J.-F. Bonne-

fon, and I. Rahwan, ‘‘The moral machine experiment,’’ Nature, vol. 563,
no. 7729, pp. 59–64, Nov. 2018.

[3] Y. Wen, K. Zhang, and Z. Li, ‘‘A discriminative feature learning
approach for deep face recognition,’’ in Proc. Comput. Vis. (ECCV), 2016,
pp. 499–515.

[4] S. Singh, Y.-S. Jeong, and J. H. Park, ‘‘A survey on cloud computing
security: Issues, threats, and solutions,’’ J. Netw. Comput. Appl., vol. 75,
pp. 200–222, Nov. 2016.

[5] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ‘‘Manual for using homomorphic encryption for bioinformat-
ics,’’ Proc. IEEE, vol. 105, no. 3, pp. 552–567, Mar. 2017.

[6] Y. Ma, L. Wu, X. Gu, J. He, and Z. Yang, ‘‘A secure face-verification
scheme based on homomorphic encryption and deep neural networks,’’
IEEE Access, vol. 5, pp. 16532–16538, 2017.

[7] M. Naehrig, K. Lauter, and V. Vaikuntanathan, ‘‘Can homomorphic
encryption be practical?’’ in Proc. 3rd ACM Workshop Cloud Comput.
Secur. Workshop CCSW, 2011, pp. 113–124.

[8] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, ‘‘A survey on homo-
morphic encryption schemes: Theory and implementation,’’ ACMComput.
Surv., vol. 51, no. 4, pp. 1–35, Sep. 2018.

[9] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, ‘‘Security and privacy challenges
in cloud computing environments,’’ IEEE Secur. Privacy Mag., vol. 8,
no. 6, pp. 24–31, Nov. 2010.

[10] R. L. Rivest, L. Adleman, andM. L.Dertouzos, ‘‘On data banks and privacy
homomorphisms,’’ Found. Secure Comput., vol. 4, no. 11, pp. 169–180,
1978.

[11] D. Boneh, E. J. Goh, and K. Nissim, ‘‘Evaluating 2-DNF formulas on
ciphertexts,’’ in Proc. 2th Theory Cryptogr. Conf., Cambridge, MA, USA,
2005, pp. 325–341.

[12] T. Elgamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[13] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Proc. Int. Conf. Theory Appl. Cryptograph. Techn., 1999,
pp. 223–238.

[14] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Symp. Theory Comput. STOC, 2009, pp. 169–178.

[15] Z. Brakerski andV. Vaikuntanathan, ‘‘Efficient fully homomorphic encryp-
tion from (standard) LWE,’’ SIAM J. Comput., vol. 43, no. 2, pp. 831–871,
2014.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, Jul. 2014.

[17] S. Halevi and V. Shoup, ‘‘Design and implementation of a
homomorphic-encryption library,’’ IBM Res., vol. 6, pp. 12–15, Apr. 2013.

[18] C. Gentry, A. Sahai, and B.Waters, ‘‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,’’ in Proc. Annu. Cryptol. Conf., Santa Barbara, CA, USA, 2013,
pp. 75–92.

[19] Y. Yin, L. Chen, Y. Xu, and J.Wan, ‘‘Location-aware service recommenda-
tionwith enhanced probabilistic matrix factorization,’’ IEEEAccess, vol. 6,
pp. 62815–62825, 2018.

[20] X. Chen, L. Wang, J. Qu, N.-N. Guan, and J.-Q. Li, ‘‘Predicting miRNA–
disease association based on inductive matrix completion,’’ Bioinformat-
ics, vol. 34, pp. 4256–4265, Jun. 2018.

[21] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, ‘‘An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1273–1284,
May 2014.

[22] D. Wu and J. Haven, ‘‘Using homomorphic encryption for large
scale statistical analysis,’’ FHE-SI-Report, Univ. Stanford, Stanford,
CA, USA, Tech. Rep. TR-dwu4, 2012. [Online]. Available:
http://cs.stanford.edu/~dwu4/FHE-SI_Report.pdf

[23] D. H. Duong, P. K. Mishra, and M. Yasuda, ‘‘Efficient secure matrix mul-
tiplication over LWE-based homomorphic encryption,’’ Tatra Mountains
Math. Publications, vol. 67, no. 1, pp. 69–83, Sep. 2016.

[24] P. K. Mishra, D. H. Duong, and M. Yasuda, ‘‘Enhancement for secure
multiple matrix multiplications over ring-LWE homomorphic encryption,’’
in Proc. Inter’l Conf. Inf. Secur. Pract. Exper., Melbourne, VIC, Australia,
2017, pp. 320–330.

[25] X. Jiang, M. Kim, K. Lauter, and Y. Song, ‘‘Secure outsourced matrix
computation and application to neural networks,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Jan. 2018, pp. 1209–1222.

[26] J. S. Alperin and C. Peikert, ‘‘Faster bootstrapping with polynomial
error,’’ in Proc. Annu. Cryptol. Conf., Santa Barbara, CA, USA, 2014,
pp. 297–314.

[27] R. Hiromasa, M. Abe, and T. Okamoto, ‘‘Packing messages and optimiz-
ing bootstrapping in GSW-FHE,’’ IEICE Trans. Fundamentals Electron.,
Commun. Comput. Sci., vol. E99. A, no. 1, pp. 73–82, 2016.

[28] O. Regev, ‘‘On lattices, learning with errors, random linear codes, and
cryptography,’’ J. ACM, vol. 56, no. 6, pp. 34-1–34-40, 2009.

[29] C. Peikert, ‘‘Public-key cryptosystems from the worst-case shortest vector
problem,’’ in Proc. 41st Annu. ACM Symp. Symp. Theory Comput. STOC,
2009, pp. 333–342.

[30] Z. Brakerski and V. Vaikuntanathan, ‘‘Lattice-based FHE as secure as
PKE,’’ in Proc. 5th Conf. Innov. Theor. Comput. Sci. ITCS, 2014, pp. 1–12.

[31] D. Micciancio and C. Peikert, ‘‘Trapdoors for lattices: Simpler, tighter,
faster, smaller,’’ in Proc. Annu. Inter’l Conf. Theory Appl. Cryptograph.
Techn., Cambridge, U.K., 2012, pp. 700–718.

[32] Z. Li, S. D. Galbraith, and C. Ma, ‘‘Preventing adaptive key recovery
attacks on the GSW levelled homomorphic encryption scheme,’’ in Proc.
Inter’l Conf. Provable Secur., Nanjing, China, 2016, pp. 373–383.

[33] M. R. Albrecht, R. Player, and S. Scott, ‘‘On the concrete hardness of learn-
ing with errors,’’ J. Math. Cryptol., vol. 9, no. 3, pp. 169–203, Jan. 2015.

[34] X. Shi, X. Luo, M. Shang, and L. Gu, ‘‘Long-term performance of col-
laborative filtering based recommenders in temporally evolving systems,’’
Neurocomputing, vol. 267, pp. 635–643, Dec. 2017.

YANAN BAI was born in 1984. She is currently
pursuing the Ph.D. degree with the University
of Chinese Academy of Sciences, and studies
in the Chongqing Institute of Green and Intelli-
gent Technology, Chinese Academy of Sciences,
Chongqing, China. Her research interests include
homomorphic encryption and applications, big
data privacy protection, and cryptography theory.

XIAOYU SHI (Member, IEEE) received the B.S.
degree in computer science from PLA Informa-
tion Engineering University, Zhengzhou, China,
in 2007, and the Ph.D. degree in computer sci-
ence from the University of Electronic Science and
Technology of China, Chengdu, China, in 2015.
He joined the Chongqing Institute of Green and
Intelligent Technology, Chinese Academy of Sci-
ences, Chongqing, China, in 2015, as an Associate
Professor of computer science and engineering.

His research interests include recommender systems, cloud computing, arti-
ficial intelligence, and big data applications.

WENYUAN WU was born in 1972. He is
currently a Ph.D. Professor with the Chongqing
Institute of Green and Intelligent Technology, Chi-
nese Academy of Sciences, Chongqing, China.
His main research interests include cryptography
theory, symbolic computation, zero error compu-
tation, and automated reasoning.

VOLUME 8, 2020 98393

Y. Bai et al.: seIMC: AGSW-Based Secure and Efficient Integer Matrix Computation Scheme

JINGWEI CHEN was born in 1984. He is currently
a Ph.D. Associate Professor with the Chongqing
Institute of Green and Intelligent Technology, Chi-
nese Academy of Sciences, Chongqing, China. His
main research interests include symbol numerical
mixing algorithm, lattice reduction algorithm, and
lattice-based cryptography research.

YONG FENG was born in 1965. He is cur-
rently a Ph.D. Supervisor and a Professor with
the Chongqing Institute of Green and Intelli-
gent Technology, Chinese Academy of Sciences,
Chongqing, China. He is also the Vice President of
the Chongqing Society of electronics and the Chief
Scientist of automatic reasoning and its application
in high and new technology. His research inter-
ests include zero error computation in automatic
reasoning, information security, and adaptive
optical simulation.

98394 VOLUME 8, 2020

	INTRODUCTION
	PRELIMINARIES
	NOTATIONS
	THE LEARNING WITH ERRORS (LWE)
	HOMOMORPHIC ENCRYPTION, CIRCULAR SECURITY
	GSW SCHEME

	PROPOSED seIMC SCHEME
	CONSTRUCTION OF THE seIMC SCHEME
	PARAMETERS SETUP ALGORITHM: SETUP()
	KEY GENERATION ALGORITHM: KEYGEN()
	ENCRYPTION ALGORITHMS: SECENC() AND PUBENC()
	DECRYPTION ALGORITHMS: DECRYPT()
	HOMOMORPHIC MATRIX OPERATIONS: EVAL()

	SCHEME ANALYSIS
	CORRECTNESS ANALYSIS
	SECURITY ANALYSIS
	COMPLEXITY ANALYSIS

	IMPLEMENTATION
	EXPERIMENTAL SETTING
	VERIFICATION OF COMPLEXITY ANALYSIS
	IMPLEMENTATION EFFICIENCY COMPARISON

	APPLICATION TO SOCIAL NETWORK
	CONCLUSION
	REFERENCES
	Biographies
	YANAN BAI
	XIAOYU SHI
	WENYUAN WU
	JINGWEI CHEN
	YONG FENG

