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What is a primitive matrix?

Primitive vector x ∈ Zn:

Definition: x = dy for y ∈ Zn and d ∈ Z implies d = ±1.

Reiner ’56: x ∈ Zn is primitive ⇐⇒ x can be extended to an n × n

unimodular matrix over Z.

Primitive matrix A ∈ Zk×n with k ≤ n:

Def.: A can be extended to an n × n unimodular matrix over Z.
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What is our problem?

For a given primitive matrix A ∈ Zk×n with ∥A∥ = max
i,j

|ai,j | ≤ λ

Complete A to B ∈ Zm×n with entries uniformly random from

Λ := Z ∩ [0, λ).

k A

m − k

B

n

What is the probability of that B is still primitive ?
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Motivation: unimodular matrix completion

Unimodular matrices has many applications.

lattice reduction, sigal compression, optimization, · · ·

Unimodular matrix completion is classic.

Reiner ’56, Cassels ’71, Newman ’72, · · ·

Unimodular matrix completion is still active.

Existence: Zhan ’06, Fang ’07, Duffner & Silva ’17, · · ·
Polynomial matrices: Kalaimani, et al. ’13, Zhou & Labahn ’14, · · ·
Probability/density: Maze et al. ’11, Fontein & Wocjan ’14, · · ·

How to effeciently complete a primitive matrix ?

Method: Choose elements uniformly at random from Λ.

Problem 1: How many rows can we randomly choose ?

Problem 2: What is the probability of success ?

Problem 3: How fast is the algorithm ?
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Related work on probability analysis

k A

m − k

n

B m = (n − 1)− s

Maze-Rosenthal-Wagner ’11: For k = 0, s ≥ 0, the natural density is

n∏
j=s+2

1

ζ(j)
(λ → ∞),

where ζ(·) is the Riemann’s zeta function.

Fontein-Wocjan ’14:

For k ≥ 2n + 1, a probability is rigorously proven.

For n + 1 ≤ k < 2n + 1, a probability is conjectured.

. . .
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Our result on the probability

A primitive matrix A ∈ Zk×n with ∥A∥ ≤ λ

An integer s with 0 ≤ s ≤ n − k − 2

B ∈ Z(n−s−1)×n: a completion of A with unif. rand. entries from Λ

Then the probability of that B is primitive is at least

1− 4

(
2

3

)s+1
(
1−

(
2

3

)n−k−s−1
)

− 2(n − s − 1)2

λs+2

(
1− 1

λn−k−s−1

)
.

k A

m − k

n

B m = (n − 1)− s
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Then the probability of that B is primitive is at least

1− 4

(
2

3

)s+1

����������
(
1−

(
2

3

)n−k−s−1
)

− 2(n − s − 1)2

λs+2 ��������
(
1− 1

λn−k−s−1

)
.

The bound is almost independent of k .

When λ is large, the bound could be even simpler.

E.g., if s = 3, then the probability is ≥ 0.2.

The bound is effective only if s ≥ 3 !
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Roadmap

1 Proof of the result

2 Application to unimodular matrix completion

Jingwei Chen (CIGIT, CAS) On the probability of generating a primitive matrix 8 / 21



Roadmap

1 Proof of the result

2 Application to unimodular matrix completion

Jingwei Chen (CIGIT, CAS) On the probability of generating a primitive matrix 9 / 21



The idea of the proof

For i = k, . . . , n − s − 1, define

Ai =


a1
a2
...

ai

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

ai,1 ai,2 · · · ai,n

 .

Idea: Give an upper bound on the probability of the event that An−s−1 is

not primitive under the assumption that Ak is primitive.

Tool: If Ai is not primitive, then there must be at least one prime p such

that rank(Ai ) ≤ i − 1 over Zp.
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Some events and their probability

MDepi : There exists at least one prime p s.t. rank(Ai ) ≤ i − 1 over Zp.

¬MDepi : Ai is a primitive matrix.

Goal: Give an upper bound on Pr[MDepn−s−1|¬MDepk ].

Pr[MDepn−s−1|¬MDepk ] ≤ · · · ≤
n−s−1∑
i=k+1

Pr[MDepi |¬MDepi−1].

Depi : rank(Ai ) ≤ i − 1 over Q.

Pr[MDepi |¬MDepi−1] ≤ Pr[(MDepi ∧ Depi )|¬MDepi−1]

+

Pr[(MDepi ∧ ¬Depi )|¬MDepi−1]
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Bound Pr[MDepi |¬MDepi−1]

Let λ ≥ 2 be an integer and k + 1 ≤ i ≤ n − 3.

Pr[(MDepi ∧ Depi )|¬MDepi−1] ≤ Pr[Depi |¬MDepi−1] ≤
(
1

λ

)n−i+1

.

Pr[(MDep
(p<λ)
i ∧ ¬Depi )|¬MDepi−1] ≤

(
2

3

)n−i+1

+
3

4

(
1

3

)n−i+1

.

Pr[(MDep
(p≥λ)
i ∧ ¬Depi )|¬MDepi−1] ≤ (i(1 + logλ i)) ·

(
1

λ

)n−i+1

.
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On the probability for s = 0, 1, 2

k A

m − k

n

B m = (n − 1)− s

▲! The bound is effective only if s ≥ 3.

A heuristic based on an extensively experimental study:

A constant lower bound on the probability exists for s = 0, 1, 2 as well.

Jingwei Chen (CIGIT, CAS) On the probability of generating a primitive matrix 13 / 21



On the probability for s = 0, 1, 2

k A

m − k

n

B m = (n − 1)− s

▲! The bound is effective only if s ≥ 3.

A heuristic based on an extensively experimental study:

A constant lower bound on the probability exists for s = 0, 1, 2 as well.

Jingwei Chen (CIGIT, CAS) On the probability of generating a primitive matrix 13 / 21



Roadmap

1 Proof of the result

2 Application to unimodular matrix completion
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Hermite normal form

Non-singular matrix H ∈ Zn×n is in Hermite normal form if

H is upper triangular with non-negative entries,

hi,j < hj,j .

For any A ∈ Zn×n, there is a unique H in Hemite normal form, denoted

by HNF(A), such that H = UA with U unimodular.

A =



−66 −65 20 −90 30

55 5 −7 −21 62

68 66 16 −56 −79

13 −41 −62 −50 28

26 −36 −34 −8 −71


,HNF(A) =



1 0 0 10 260 246 748

0 1 0 2 292 062 707

0 0 1 7 244 095 302

0 0 0 14 342 954 195

0 0 0 0 344 319 363
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Determinant reduction (Storjohann ’03)

A =



−66 −65 20 −90 30

55 5 −7 −21 62

68 66 16 −56 −79

13 −41 −62 −50 28

26 −36 −34 −8 −71



B =



−66 −65 20 −90 −14

55 5 −7 −21 2

68 66 16 −56 17

13 −41 −62 −50 4

26 −36 −34 −8 −4



HNF(A) =



1 0 0 10 260 246 748

0 1 0 2 292 062 707

0 0 1 7 244 095 302

0 0 0 14 342 954 195

0 0 0 0 344 319 363



HNF(B) =



1 0 0 10 0

0 1 0 2 0

0 0 1 7 0

0 0 0 14 0

0 0 0 0 1
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Determinant reduction (Storjohann ’03)

Algorithm 1

Input: An integer matrix A ∈ Zn×n.

Output: A matrix B ∈ Zn×n, with B equal to A except for the last

column, ∥B∥ ≤ n2∥A∥, and the last diagonal of HNF(B) equal to 1.

Proposition

Given an n × n integer matrix A, Algorithm 1 is a correct Las Vegas

algorithm and requires at most O(nω+ε log1+ε ∥A∥) bit operations.
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Iterated determinant reduction (Storjohann ’05)

B =



−66 −65 20 −90 −14

55 5 −7 −21 2

68 66 16 −56 17

13 −41 −62 −50 4

26 −36 −34 −8 −4



BP =



−14 −66 −65 20 −90

2 55 5 −7 −21

17 68 66 16 −56

4 13 −41 −62 −50

−4 26 −36 −34 −8



HNF(B) =



1 0 0 10 0

0 1 0 2 0

0 0 1 7 0

0 0 0 14 0

0 0 0 0 1



HNF(BP) =



1 0 0 0 0

0 1 0 0 10

0 0 1 0 2

0 0 0 1 7

0 0 0 0 14
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Unimodular matrix completion

Theorem

Given a primitive matrix A ∈ Zk×n, there exists a Las Vegas algorithm

that completes A to an n × n unimodular matrix U such that

∥U∥ ≤ nO(1)∥A∥

in an expected number of

O(nω+ε log1+ε ∥A∥)

bit operations.

The standard method: O((n − k)nω+ε log1+ε ∥A∥).
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Conclusion

Given a primitive A ∈ Zk×n, consider to complete A to an (n− s − 1)× n

matrix with uniformly random integers in [0, ∥A∥).
We present a rigorous proof of the probability for 3 ≤ s ≤ n − k − 2.

Previously, only the limit probability when λ → ∞ is known for k = 0.

We propose a fast Las Vegas algorithm for unimodular matrix com-

pletion with expected bit-complexity bounded by Õ(nω log ∥A∥).

Open problems

A rigorous proof for 0 ≤ s ≤ 2 ?

And for −n − 2 < s < −1 ?

Other distributions ?

Generalization for polynomial matrices ?

Thanks
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Open problems

A rigorous proof for 0 ≤ s ≤ 2 ?

And for −n − 2 < s < −1 ?

Other distributions ?

Generalization for polynomial matrices ?

Thanks

Jingwei Chen (CIGIT, CAS) On the probability of generating a primitive matrix 21 / 21



Conclusion

Given a primitive A ∈ Zk×n, consider to complete A to an (n− s − 1)× n

matrix with uniformly random integers in [0, ∥A∥).
We present a rigorous proof of the probability for 3 ≤ s ≤ n − k − 2.

Previously, only the limit probability when λ → ∞ is known for k = 0.

We propose a fast Las Vegas algorithm for unimodular matrix com-

pletion with expected bit-complexity bounded by Õ(nω log ∥A∥).
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