On the probability of generating a primitive matrix

陈经纬

Joint work with Yong Feng，Yang Liu and Wenyuan Wu arXiv：2105．05383

March 16， 2023 ＠Shandong University

What is a primitive matrix?

Primitive vector $\boldsymbol{x} \in \mathbb{Z}^{n}$:

- Definition: $\boldsymbol{x}=d \boldsymbol{y}$ for $\boldsymbol{y} \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$ implies $d= \pm 1$.
- Reiner '56: $\boldsymbol{x} \in \mathbb{Z}^{n}$ is primitive $\Longleftrightarrow \boldsymbol{x}$ can be extended to an $n \times n$ unimodular matrix over \mathbb{Z}.

What is a primitive matrix?

Primitive vector $\boldsymbol{x} \in \mathbb{Z}^{n}$:

- Definition: $\boldsymbol{x}=d \boldsymbol{y}$ for $\boldsymbol{y} \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$ implies $d= \pm 1$.
- Reiner '56: $\boldsymbol{x} \in \mathbb{Z}^{n}$ is primitive $\Longleftrightarrow \boldsymbol{x}$ can be extended to an $n \times n$ unimodular matrix over \mathbb{Z}.

Primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $k \leq n$:

- Def.: \boldsymbol{A} can be extended to an $n \times n$ unimodular matrix over \mathbb{Z}.

What is our problem?

- For a given primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\|=\max _{i, j}\left|a_{i, j}\right| \leq \lambda$

$$
\begin{gathered}
\\
\\
k
\end{gathered}
$$

What is our problem?

- For a given primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\|=\max _{i, j}\left|a_{i, j}\right| \leq \lambda$
- Complete \boldsymbol{A} to $\boldsymbol{B} \in \mathbb{Z}^{m \times n}$ with entries uniformly random from

$$
\Lambda:=\mathbb{Z} \cap[0, \lambda)
$$

n
k
A
B

$$
m-k
$$

What is our problem?

- For a given primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\|=\max _{i, j}\left|a_{i, j}\right| \leq \lambda$
- Complete \boldsymbol{A} to $\boldsymbol{B} \in \mathbb{Z}^{m \times n}$ with entries uniformly random from

$$
\Lambda:=\mathbb{Z} \cap[0, \lambda)
$$

■ What is the probability of that \boldsymbol{B} is still primitive?

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.

■ lattice reduction, sigal compression, optimization, ...

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...

■ Unimodular matrix completion is classic.
■ Reiner '56, Cassels '71, Newman '72, ...

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...

- Unimodular matrix completion is still active.

■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...
■ Unimodular matrix completion is still active.
■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...

- Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...
■ Unimodular matrix completion is still active.
■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...

- Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...
- Probability/density: Maze et al. '11, Fontein \& Wocjan '14, ...

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...
■ Unimodular matrix completion is still active.
■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...

- Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...
- Probability/density: Maze et al. '11, Fontein \& Wocjan '14, ...
- How to effeciently complete a primitive matrix?

■ Method: Choose elements uniformly at random from Λ.

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...
■ Unimodular matrix completion is still active.
■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...

- Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...
- Probability/density: Maze et al. '11, Fontein \& Wocjan '14, ...
- How to effeciently complete a primitive matrix?
- Method: Choose elements uniformly at random from Λ.
- Problem 1: How many rows can we randomly choose?

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...
■ Unimodular matrix completion is still active.
■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...
■ Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...

- Probability/density: Maze et al. '11, Fontein \& Wocjan '14, ...
- How to effeciently complete a primitive matrix?

■ Method: Choose elements uniformly at random from Λ.
■ Problem 1: How many rows can we randomly choose?
■ Problem 2: What is the probability of success?

Motivation: unimodular matrix completion

- Unimodular matrices has many applications.
- lattice reduction, sigal compression, optimization, ...
- Unimodular matrix completion is classic.

■ Reiner '56, Cassels '71, Newman '72, ...

- Unimodular matrix completion is still active.

■ Existence: Zhan '06, Fang '07, Duffner \& Silva '17, ...
■ Polynomial matrices: Kalaimani, et al. '13, Zhou \& Labahn '14, ...

- Probability/density: Maze et al. '11, Fontein \& Wocjan '14, ...
- How to effeciently complete a primitive matrix?

■ Method: Choose elements uniformly at random from Λ.
■ Problem 1: How many rows can we randomly choose?
■ Problem 2: What is the probability of success?
■ Problem 3: How fast is the algorithm?

Related work on probability analysis

$$
\quad m=(n-1)-s
$$

■ Maze-Rosenthal-Wagner '11: For $k=0, s \geq 0$, the natural density is

$$
\prod_{j=s+2}^{n} \frac{1}{\zeta(j)} \quad(\lambda \rightarrow \infty)
$$

where $\zeta(\cdot)$ is the Riemann's zeta function.

Related work on probability analysis

$$
\quad m=(n-1)-s
$$

■ Maze-Rosenthal-Wagner '11: For $k=0, s \geq 0$, the natural density is

$$
\prod_{j=s+2}^{n} \frac{1}{\zeta(j)} \quad(\lambda \rightarrow \infty)
$$

where $\zeta(\cdot)$ is the Riemann's zeta function.

- Fontein-Wocjan '14:
- For $k \geq 2 n+1$, a probability is rigorously proven.

■ For $n+1 \leq k<2 n+1$, a probability is conjectured.

Our result on the probability

- A primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\| \leq \lambda$
- An integer s with $0 \leq s \leq n-k-2$
- $\boldsymbol{B} \in \mathbb{Z}^{(n-s-1) \times n}$: a completion of \boldsymbol{A} with unif. rand. entries from Λ

Then the probability of that \boldsymbol{B} is primitive is at least

$$
1-4\left(\frac{2}{3}\right)^{s+1}\left(1-\left(\frac{2}{3}\right)^{n-k-s-1}\right)-\frac{2(n-s-1)^{2}}{\lambda^{s+2}}\left(1-\frac{1}{\lambda^{n-k-s-1}}\right) .
$$

$$
\quad \begin{aligned}
& \\
& \hline m=(n-1)-s
\end{aligned}
$$

Our result on the probability

- A primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\| \leq \lambda$
- An integer s with $0 \leq s \leq n-k-2$
- $\boldsymbol{B} \in \mathbb{Z}^{(n-s-1) \times n}$: a completion of \boldsymbol{A} with unif. rand. entries from Λ

Then the probability of that \boldsymbol{B} is primitive is at least

$$
1-4\left(\frac{2}{3}\right)^{s+1}\left(1-\left(\frac{2}{3}\right)^{n-k-s-1}\right)-\frac{2(n-s-1)^{2}}{\lambda^{s+2}}\left(1-\frac{1}{\lambda^{n-k-s-1}}\right)
$$

- The bound is almost independent of k.

Our result on the probability

- A primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\| \leq \lambda$
- An integer s with $0 \leq s \leq n-k-2$
- $\boldsymbol{B} \in \mathbb{Z}^{(n-s-1) \times n}$: a completion of \boldsymbol{A} with unif. rand. entries from Λ

Then the probability of that \boldsymbol{B} is primitive is at least

$$
1-4\left(\frac{2}{3}\right)^{s+1}\left(1-\left(\frac{2}{3}\right)^{n-k-s-1}\right)-\frac{2(n-s-1)^{2}}{\lambda^{s+2}}\left(1-\frac{1}{\lambda^{n-k-s-1}}\right) .
$$

- The bound is almost independent of k.
- When λ is large, the bound could be even simpler.

Our result on the probability

- A primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\| \leq \lambda$
- An integer s with $0 \leq s \leq n-k-2$
- $\boldsymbol{B} \in \mathbb{Z}^{(n-s-1) \times n}$: a completion of \boldsymbol{A} with unif. rand. entries from Λ

Then the probability of that \boldsymbol{B} is primitive is at least

$$
1-4\left(\frac{2}{3}\right)^{s+1}\left(1-\left(\frac{2}{3}\right)^{n-k-s-1}\right)-\frac{2(n-s-1)^{2}}{\lambda^{s+2}}\left(1-\frac{1}{\lambda^{n-k-s-1}}\right)
$$

- The bound is almost independent of k.
- When λ is large, the bound could be even simpler.
- E.g., if $s=3$, then the probability is ≥ 0.2.

Our result on the probability

- A primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$ with $\|\boldsymbol{A}\| \leq \lambda$
- An integer s with $0 \leq s \leq n-k-2$
- $\boldsymbol{B} \in \mathbb{Z}^{(n-s-1) \times n}$: a completion of \boldsymbol{A} with unif. rand. entries from Λ

Then the probability of that \boldsymbol{B} is primitive is at least

$$
1-4\left(\frac{2}{3}\right)^{s+1}\left(1-\left(\frac{2}{3}\right)^{n-k-s-1}\right)-\frac{2(n-s-1)^{2}}{\lambda^{s+2}}\left(1-\frac{1}{\lambda^{n-k-s-1}}\right)
$$

- The bound is almost independent of k.
- When λ is large, the bound could be even simpler.
- E.g., if $s=3$, then the probability is ≥ 0.2.
- The bound is effective only if $s \geq 3$!

Roadmap

1 Proof of the result

2 Application to unimodular matrix completion

Roadmap

1 Proof of the result

2 Application to unimodular matrix completion

The idea of the proof

For $i=k, \ldots, n-s-1$, define

$$
\boldsymbol{A}_{i}=\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\boldsymbol{a}_{2} \\
\vdots \\
\boldsymbol{a}_{i}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
a_{i, 1} & a_{i, 2} & \cdots & a_{i, n}
\end{array}\right) .
$$

Idea: Give an upper bound on the probability of the event that \boldsymbol{A}_{n-s-1} is not primitive under the assumption that \boldsymbol{A}_{k} is primitive.
Tool: If $\boldsymbol{A}_{\boldsymbol{i}}$ is not primitive, then there must be at least one prime p such that $\operatorname{rank}\left(\boldsymbol{A}_{i}\right) \leq i-1$ over \mathbb{Z}_{p}.

Some events and their probability

MDep_{i} : There exists at least one prime p s.t. $\operatorname{rank}\left(\boldsymbol{A}_{i}\right) \leq i-1$ over \mathbb{Z}_{p}. $\neg \mathrm{MDep}_{i}: \boldsymbol{A}_{i}$ is a primitive matrix.

Goal: Give an upper bound on $\operatorname{Pr}\left[\mathrm{MDep}_{n-s-1} \mid \neg \mathrm{MDep}_{k}\right]$.

Some events and their probability

MDep_{i} : There exists at least one prime p s.t. $\operatorname{rank}\left(\boldsymbol{A}_{i}\right) \leq i-1$ over \mathbb{Z}_{p}. $\neg \mathrm{MDep}_{i}: \boldsymbol{A}_{i}$ is a primitive matrix.

Goal: Give an upper bound on $\operatorname{Pr}\left[\mathrm{MDep}_{n-s-1} \mid \neg \mathrm{MDep}_{k}\right]$.

$$
\operatorname{Pr}\left[\mathrm{MDep}_{n-s-1} \mid \neg \mathrm{MDep}_{k}\right] \leq \cdots \leq \sum_{i=k+1}^{n-s-1} \operatorname{Pr}\left[\mathrm{MDep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right]
$$

Some events and their probability

MDep_{i} : There exists at least one prime p s.t. $\operatorname{rank}\left(\boldsymbol{A}_{i}\right) \leq i-1$ over \mathbb{Z}_{p}. $\neg \mathrm{MDep}_{i}: \boldsymbol{A}_{i}$ is a primitive matrix.

Goal: Give an upper bound on $\operatorname{Pr}\left[\mathrm{MDep}_{n-s-1} \mid \neg \mathrm{MDep}_{k}\right]$.

$$
\operatorname{Pr}\left[\mathrm{MDep}_{n-s-1} \mid \neg \mathrm{MDep}_{k}\right] \leq \cdots \leq \sum_{i=k+1}^{n-s-1} \operatorname{Pr}\left[\mathrm{MDep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right]
$$

$\operatorname{Dep}_{i}: \operatorname{rank}\left(\boldsymbol{A}_{i}\right) \leq i-1$ over \mathbb{Q}.

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{MDep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right] \leq \operatorname{Pr}\left[\left(\mathrm{MDep}_{i} \wedge \mathrm{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right] \\
&+ \\
& \operatorname{Pr}\left[\left(\mathrm{MDep}_{i} \wedge \neg \operatorname{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right]
\end{aligned}
$$

Bound $\operatorname{Pr}\left[\mathrm{MDep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right]$

Let $\lambda \geq 2$ be an integer and $k+1 \leq i \leq n-3$.

$$
\operatorname{Pr}\left[\left(\mathrm{MDep}_{i} \wedge \operatorname{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right] \leq \operatorname{Pr}\left[\operatorname{Dep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right] \leq\left(\frac{1}{\lambda}\right)^{n-i+1}
$$

Bound $\operatorname{Pr}\left[\mathrm{MDep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right]$

Let $\lambda \geq 2$ be an integer and $k+1 \leq i \leq n-3$.

$$
\operatorname{Pr}\left[\left(\mathrm{MDep}_{i} \wedge \operatorname{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right] \leq \operatorname{Pr}\left[\operatorname{Dep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right] \leq\left(\frac{1}{\lambda}\right)^{n-i+1}
$$

$$
\operatorname{Pr}\left[\left(\operatorname{MDep}_{i}^{(p<\lambda)} \wedge \neg \operatorname{Dep}_{i}\right) \mid \neg \operatorname{MDep}_{i-1}\right] \leq\left(\frac{2}{3}\right)^{n-i+1}+\frac{3}{4}\left(\frac{1}{3}\right)^{n-i+1}
$$

Bound $\operatorname{Pr}\left[\right.$ MDep $_{i} \mid \neg$ MDep $\left._{i-1}\right]$

Let $\lambda \geq 2$ be an integer and $k+1 \leq i \leq n-3$.

$$
\operatorname{Pr}\left[\left(\mathrm{MDep}_{i} \wedge \operatorname{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right] \leq \operatorname{Pr}\left[\operatorname{Dep}_{i} \mid \neg \mathrm{MDep}_{i-1}\right] \leq\left(\frac{1}{\lambda}\right)^{n-i+1}
$$

$$
\operatorname{Pr}\left[\left(\operatorname{MDep}_{i}^{(p<\lambda)} \wedge \neg \operatorname{Dep}_{i}\right) \mid \neg \mathrm{MDep}_{i-1}\right] \leq\left(\frac{2}{3}\right)^{n-i+1}+\frac{3}{4}\left(\frac{1}{3}\right)^{n-i+1}
$$

$$
\operatorname{Pr}\left[\left(\operatorname{MDep}_{i}^{(p \geq \lambda)} \wedge \neg \operatorname{Dep}_{i}\right) \mid \neg \operatorname{MDep}_{i-1}\right] \leq\left(i\left(1+\log _{\lambda} i\right)\right) \cdot\left(\frac{1}{\lambda}\right)^{n-i+1}
$$

On the probability for $s=0,1,2$

$$
\begin{array}{rlr}
& \begin{array}{l}
n \\
k \\
m-k
\end{array} & A \\
& B & m=(n-1)-s
\end{array}
$$

A The bound is effective only if $s \geq 3$.

On the probability for $s=0,1,2$

$$
\begin{array}{rlr}
& \begin{array}{l}
n \\
k
\end{array} & \begin{array}{l}
\text { A } \\
k
\end{array} \\
m-k & B=(n-1)-s
\end{array}
$$

A The bound is effective only if $s \geq 3$.
A heuristic based on an extensively experimental study:
A constant lower bound on the probability exists for $s=0,1,2$ as well.

Roadmap

1 Proof of the result

2 Application to unimodular matrix completion

Hermite normal form

Non-singular matrix $\boldsymbol{H} \in \mathbb{Z}^{n \times n}$ is in Hermite normal form if

- \boldsymbol{H} is upper triangular with non-negative entries,
- $h_{i, j}<h_{j, j}$.

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 10 & 260 & 246748 \\
0 & 1 & 0 & 2 & 292062707 \\
0 & 0 & 1 & 7 & 244095302 \\
0 & 0 & 0 & 14 & 342954 & 195 \\
0 & 0 & 0 & 0 & 344319 & 363
\end{array}\right)
$$

Hermite normal form

Non-singular matrix $\boldsymbol{H} \in \mathbb{Z}^{n \times n}$ is in Hermite normal form if

- \boldsymbol{H} is upper triangular with non-negative entries,
- $h_{i, j}<h_{j, j}$.

For any $\boldsymbol{A} \in \mathbb{Z}^{n \times n}$, there is a unique \boldsymbol{H} in Hemite normal form, denoted by $\operatorname{HNF}(\boldsymbol{A})$, such that $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{A}$ with \boldsymbol{U} unimodular.

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 10 & 260 & 246748 \\
0 & 1 & 0 & 2 & 292062707 \\
0 & 0 & 1 & 7 & 244095302 \\
0 & 0 & 0 & 14 & 342954195 \\
0 & 0 & 0 & 0 & 344319363
\end{array}\right)
$$

Hermite normal form

Non-singular matrix $\boldsymbol{H} \in \mathbb{Z}^{n \times n}$ is in Hermite normal form if

- \boldsymbol{H} is upper triangular with non-negative entries,
- $h_{i, j}<h_{j, j}$.

For any $\boldsymbol{A} \in \mathbb{Z}^{n \times n}$, there is a unique \boldsymbol{H} in Hemite normal form, denoted by $\operatorname{HNF}(\boldsymbol{A})$, such that $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{A}$ with \boldsymbol{U} unimodular.

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & 30 \\
55 & 5 & -7 & -21 & 62 \\
68 & 66 & 16 & -56 & -79 \\
13 & -41 & -62 & -50 & 28 \\
26 & -36 & -34 & -8 & -71
\end{array}\right), \operatorname{HNF}(\boldsymbol{A})=\left(\begin{array}{cccccc}
1 & 0 & 0 & 10 & 260246748 \\
0 & 1 & 0 & 2 & 292062707 \\
0 & 0 & 1 & 7 & 244095302 \\
0 & 0 & 0 & 14 & 342954195 \\
0 & 0 & 0 & 0 & 344319363
\end{array}\right)
$$

Determinant reduction (Storjohann '03)

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & 30 \\
55 & 5 & -7 & -21 & 62 \\
68 & 66 & 16 & -56 & -79 \\
13 & -41 & -62 & -50 & 28 \\
26 & -36 & -34 & -8 & -71
\end{array}\right) \\
& \operatorname{HNF}(\boldsymbol{A})=\left(\begin{array}{cccccc}
1 & 0 & 0 & 10 & 260 & 246748 \\
0 & 1 & 0 & 2 & 292 & 062707 \\
0 & 0 & 1 & 7 & 244 & 095302 \\
0 & 0 & 0 & 14 & 342954195 \\
0 & 0 & 0 & 0 & 344 & 319363
\end{array}\right)
\end{aligned}
$$

Determinant reduction (Storjohann '03)

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & 30 \\
55 & 5 & -7 & -21 & 62 \\
68 & 66 & 16 & -56 & -79 \\
13 & -41 & -62 & -50 & 28 \\
26 & -36 & -34 & -8 & -71
\end{array}\right) \quad \boldsymbol{B}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & -14 \\
55 & 5 & -7 & -21 & 2 \\
68 & 66 & 16 & -56 & 17 \\
13 & -41 & -62 & -50 & 4 \\
26 & -36 & -34 & -8 & -4
\end{array}\right)
$$

$$
\operatorname{HNF}(\boldsymbol{A})=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 10 & 260246748 \\
0 & 1 & 0 & 2 & 292062707 \\
0 & 0 & 1 & 7 & 244095302 \\
0 & 0 & 0 & 14 & 342954195 \\
0 & 0 & 0 & 0 & 344319363
\end{array}\right)
$$

Determinant reduction (Storjohann '03)

$$
\left.\begin{array}{l}
\boldsymbol{A}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & 30 \\
55 & 5 & -7 & -21 & 62 \\
68 & 66 & 16 & -56 & -79 \\
13 & -41 & -62 & -50 & 28 \\
26 & -36 & -34 & -8 & -71
\end{array}\right) \quad \boldsymbol{B}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & -14 \\
55 & 5 & -7 & -21 & 2 \\
68 & 66 & 16 & -56 & 17 \\
13 & -41 & -62 & -50 & 4 \\
26 & -36 & -34 & -8 & -4
\end{array}\right) \\
\operatorname{HNF}(\boldsymbol{A})=\left(\begin{array}{cccccc}
1 & 0 & 0 & 10 & 260 & 246 \\
0 & 1 & 0 & 2 & 292 & 062 \\
0 & 0 & 1 & 7 & 244 & 095 \\
302 \\
0 & 0 & 0 & 14 & 342 & 954 \\
195 \\
0 & 0 & 0 & 0 & 344 & 319
\end{array}\right) \quad
\end{array} \quad \begin{array}{ll}
363
\end{array}\right) \quad \operatorname{HNF}(\boldsymbol{B})=\left(\begin{array}{ccccc}
1 & 0 & 0 & 10 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 14 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

Determinant reduction (Storjohann '03)

Algorithm 1

Input: An integer matrix $\boldsymbol{A} \in \mathbb{Z}^{n \times n}$.
Output: A matrix $\boldsymbol{B} \in \mathbb{Z}^{n \times n}$, with \boldsymbol{B} equal to \boldsymbol{A} except for the last column, $\|\boldsymbol{B}\| \leq n^{2}\|\boldsymbol{A}\|$, and the last diagonal of $\operatorname{HNF}(\boldsymbol{B})$ equal to 1 .

Proposition

Given an $n \times n$ integer matrix \boldsymbol{A}, Algorithm 1 is a correct Las Vegas algorithm and requires at most $O\left(n^{\omega+\varepsilon} \log ^{1+\varepsilon}\|\boldsymbol{A}\|\right)$ bit operations.

Iterated determinant reduction (Storjohann '05)

$$
\boldsymbol{B}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & -14 \\
55 & 5 & -7 & -21 & 2 \\
68 & 66 & 16 & -56 & 17 \\
13 & -41 & -62 & -50 & 4 \\
26 & -36 & -34 & -8 & -4
\end{array}\right)
$$

$$
\operatorname{HNF}(B)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 10 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 14 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Iterated determinant reduction (Storjohann '05)

$$
\boldsymbol{B}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & -14 \\
55 & 5 & -7 & -21 & 2 \\
68 & 66 & 16 & -56 & 17 \\
13 & -41 & -62 & -50 & 4 \\
26 & -36 & -34 & -8 & -4
\end{array}\right) \quad \boldsymbol{P P}=\left(\begin{array}{ccccc}
-14 & -66 & -65 & 20 & -90 \\
2 & 55 & 5 & -7 & -21 \\
17 & 68 & 66 & 16 & -56 \\
4 & 13 & -41 & -62 & -50 \\
-4 & 26 & -36 & -34 & -8
\end{array}\right)
$$

$$
\operatorname{HNF}(B)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 10 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 14 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Iterated determinant reduction (Storjohann '05)

$$
\begin{aligned}
& \boldsymbol{B}=\left(\begin{array}{ccccc}
-66 & -65 & 20 & -90 & -14 \\
55 & 5 & -7 & -21 & 2 \\
68 & 66 & 16 & -56 & 17 \\
13 & -41 & -62 & -50 & 4 \\
26 & -36 & -34 & -8 & -4
\end{array}\right) \quad \boldsymbol{B P}=\left(\begin{array}{ccccc}
-14 & -66 & -65 & 20 & -90 \\
2 & 55 & 5 & -7 & -21 \\
17 & 68 & 66 & 16 & -56 \\
4 & 13 & -41 & -62 & -50 \\
-4 & 26 & -36 & -34 & -8
\end{array}\right) \\
& \operatorname{HNF}(\boldsymbol{B})=\left(\begin{array}{ccccc}
1 & 0 & 0 & 10 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 14 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \operatorname{HNF}(\boldsymbol{B P})=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 10 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 14
\end{array}\right)
\end{aligned}
$$

Iterated determinant reduction (Storjohann '05)

$$
\boldsymbol{B P}=\left(\begin{array}{ccccc}
-14 & -66 & -65 & 20 & -90 \\
2 & 55 & 5 & -7 & -21 \\
17 & 68 & 66 & 16 & -56 \\
4 & 13 & -41 & -62 & -50 \\
-4 & 26 & -36 & -34 & -8
\end{array}\right)
$$

$$
\operatorname{HNF}(B P)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 10 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 14
\end{array}\right)
$$

Iterated determinant reduction (Storjohann ’05)

$$
\begin{gathered}
\boldsymbol{B P}=\left(\begin{array}{ccccc}
-14 & -66 & -65 & 20 & -90 \\
2 & 55 & 5 & -7 & -21 \\
17 & 68 & 66 & 16 & -56 \\
4 & 13 & -41 & -62 & -50 \\
-4 & 26 & -36 & -34 & -8
\end{array}\right) \quad \boldsymbol{C}=\left(\begin{array}{ccccc}
-14 & -66 & -65 & 20 & -20 \\
2 & 55 & 5 & -7 & 12 \\
17 & 68 & 66 & 16 & 31 \\
4 & 13 & -41 & -62 & -21 \\
-4 & 26 & -36 & -34 & -9
\end{array}\right) \\
\operatorname{HNF}(\boldsymbol{B P})=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 10 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 14
\end{array}\right) \quad \operatorname{HNF}(\boldsymbol{C})=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Unimodular matrix completion

Theorem

Given a primitive matrix $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, there exists a Las Vegas algorithm that completes \boldsymbol{A} to an $n \times n$ unimodular matrix \boldsymbol{U} such that

$$
\|\boldsymbol{U}\| \leq n^{O(1)}\|\boldsymbol{A}\|
$$

in an expected number of

$$
O\left(n^{\omega+\varepsilon} \log ^{1+\varepsilon}\|\boldsymbol{A}\|\right)
$$

bit operations.

- The standard method: $O\left((n-k) n^{\omega+\varepsilon} \log ^{1+\varepsilon}\|\boldsymbol{A}\|\right)$.

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

- We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.
- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.
- We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.
■ Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.
■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?
- And for $-n-2<s<-1$?

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?
- And for $-n-2<s<-1$?

■ Other distributions?

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?
- And for $-n-2<s<-1$?
- Other distributions?

■ Generalization for polynomial matrices?

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?
- And for $-n-2<s<-1$?
- Other distributions?

■ Generalization for polynomial matrices?

Conclusion

Given a primitive $\boldsymbol{A} \in \mathbb{Z}^{k \times n}$, consider to complete \boldsymbol{A} to an $(n-s-1) \times n$ matrix with uniformly random integers in $[0,\|\boldsymbol{A}\|)$.

■ We present a rigorous proof of the probability for $3 \leq s \leq n-k-2$.

- Previously, only the limit probability when $\lambda \rightarrow \infty$ is known for $k=0$.

■ We propose a fast Las Vegas algorithm for unimodular matrix completion with expected bit-complexity bounded by $\widetilde{O}\left(n^{\omega} \log \|\boldsymbol{A}\|\right)$.

Open problems

- A rigorous proof for $0 \leq s \leq 2$?
- And for $-n-2<s<-1$?
- Other distributions?

■ Generalization for polynomial matrices?
THANKS

