Non-interactive privacy-preserving naïve Bayes classifier using homomorphic encryption

Jingwei Chen

Joint work with Y. Feng, Y. Liu, W. Wu & G. Yang

December, 2021 @ SPNCE 2021

Machine Learning as a Service (MLaaS)

- Learn a model from massive amounts of data
 - Data owner => model provider
- Infer predicted results for client's sample data
 - Client can easily obtain the predicted results.

Machine Learning as a Service (MLaaS)

- Learn a model from massive amounts of data
 - Data owner ⇒ model provider
- Infer predicted results for client's sample data
 - Client can easily obtain the predicted results.

Privacy concerns

- The model may be sensitive:
 - financial model, disease diagnosis, …
- Sample data may be sensitive:
 - credit history, medical records, ...

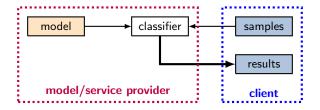


Figure: Framework of privacy-preserving classifiers

- The model is already known ⇒ no learning
- Model provider is also service provider \implies 2PC
- Light-blue boxes are encrypted \Longrightarrow secure

Threat model

Adversaries are passive (honest-but-curious).

Here are several privacy-preserving naïve Bayes classifiers based on HE:

- [Bost et al. '15]: 2PC, Quadratic Residuosity + Paillier
- [Li, et al. '16]: 4PC, Paillier
- [Kim, et al. '18]: 4PC, BGV
- [Yasumura, et al. '19]: MPC, BGV
- [Sun, et al. '20]: 2PC, BGV
- • • • •

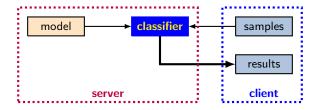
Here are several privacy-preserving naïve Bayes classifiers based on HE:

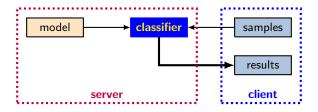
- [Bost et al. '15]: 2PC, Quadratic Residuosity + Paillier
- [Li, et al. '16]: 4PC, Paillier
- [Kim, et al. '18]: 4PC, BGV
- [Yasumura, et al. '19]: MPC, BGV
- [Sun, et al. '20]: 2PC, BGV
- • • • •

Common feature

During the classification phase, interactions are needed:

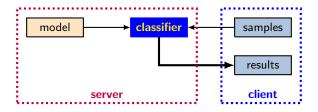
- communication burden
- (potential) information leakage





non-interactive

- Client sends an encryption of his sample data.
- Server evaluates the model and sends the encrypted results.
- Client decrypts the results to recovery the classification.

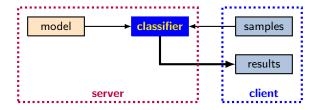


non-interactive

- Client sends an encryption of his sample data.
- Server evaluates the model and sends the encrypted results.
- Client decrypts the results to recovery the classification.

post-quantum safe

Based on BGV



non-interactive

- Client sends an encryption of his sample data.
- Server evaluates the model and sends the encrypted results.
- Client decrypts the results to recovery the classification.

post-quantum safe

Based on BGV

Main technique

An algorithm to compute argmax of an encrypted array.

Jingwei Chen (CIGIT, CAS)

1 Background

- 2 Building blocks
- **3** Proposed protocol
- **4** Experimental results

1 Background

- **2** Building blocks
- **3** Proposed protocol
- **4** Experimental results

Consider a data set with

- s categories $1, 2, \cdots, s$
- *n* features X_1, \cdots, X_n
- each feature X_k has at most t different values $1, 2, \cdots, t$.

Then the classification of a sample $\mathbf{x} = (x_1, \cdots, x_n)$ is

$$s^* = \operatorname*{argmax}_{i=1,\ldots,s} \Pr[Y=i] \prod_{k=1}^n \Pr[X_k = x_k | Y=i],$$

- prior probability: $\Pr[Y = i]$
- likelihood: $\Pr[X_k = x_k | Y = i]$

Consider a data set with

- s categories $1, 2, \cdots, s$
- *n* features X_1, \cdots, X_n
- each feature X_k has at most t different values $1, 2, \dots, t$.

Then the classification of a sample $\mathbf{x} = (x_1, \cdots, x_n)$ is

$$s^* = \underset{i=1,\ldots,s}{\operatorname{argmax}} \left\{ \log \Pr[Y=i] + \sum_{k=1}^n \log \Pr[X_k = x_k | Y=i] \right\}$$

- prior probability: $\Pr[Y = i]$
- likelihood: $\Pr[X_k = x_k | Y = i]$

Homomorphic encryption

A public key encryption scheme consists of

- KeyGen: (sk, pk) \leftarrow KeyGen (1^{λ}) ,
- Enc: $c \leftarrow \text{Enc}(pk, x)$ for $x \in \mathcal{P}$,
- Dec: $x \leftarrow \text{Dec}(\text{sk}, c)$ for $c \in C$.

LHE/FHE

Let \mathcal{F} be a set of function in $\{0,1\}^* \to \{0,1\}$. A public key scheme is \mathcal{F} -homomorphic if there exists an evaluation algorithm Eval s.t.

$$\forall f \in \mathcal{F}, \ \forall x \in \mathcal{P}, \ \mathtt{Dec}(\mathtt{sk}, \mathtt{Eval}(f, \mathtt{Enc}(\mathtt{pk}, x))) = f(x).$$

- **Leveled HE (LHE)**: $f \in \mathcal{F}$ has an *a priori* bound on the depth of its circuit.
- **Fully HE (FHE)**: $f \in \mathcal{F}$ can be an arbitrary function.

```
• LHE + bootstrapping \implies FHE
```

BGV and HElib

BGV scheme [Brakerski-Gentry-Vaikuntanathan '12]

■ Efficient LHE, supporting FHE, RLWE-based

$$P = R_p := \mathbb{Z}[X]/(\Phi_m(X), p) \cong \mathbb{F}_{p^d}^{\ell}$$

- $d = \operatorname{ord}(p)$ in \mathbb{Z}_m^* and $\ell = \phi(m)/d$
- Support SIMD operations

$$C = R_q := \mathbb{Z}[X]/(\Phi_m(X), q)$$

It evaluates *L*-level circuits with $O(\lambda \cdot L^3)$ per-gate computation.

HElib: an implementation of BGV¹

- Based on NTL², thread safe
- Batching based on SIMD operations
- "Assembly language" for HE:
 - Add, Mul, Rotate, Shift, TotalSum, AddConst, MulConst, ...

Jingwei Chen (CIGIT, CAS)

¹https://github.com/homenc/HElib

²https://github.com/libntl/ntl

1 Background

2 Building blocks

3 Proposed protocol

4 Experimental results

Input:
$$\mathbf{c}' = (c_i')_{i \leq t} \in R_q^t (c_i' \text{ encrypts the ith entry of } \mathbf{z} = (z_i)_{i \leq t}), \text{ and } pk; \mathbf{A} = (a_{i,j}) \in \mathbb{Z}^{s \times t}.$$

Output: $\mathbf{c} = (c_i)_{i \leq s}$ with $c_i = \operatorname{Enc}_{pk} \left(\sum_{j=1}^t a_{i,j} z_j \right).$
1: For $i = 1, \dots, s$ do the following:
2: $c_i \leftarrow \operatorname{Enc}_{pk}(0);$
3: For $j = 1, \dots, t$, update $c_i := \operatorname{Add}_{pk}(c_i, \operatorname{MulConst}_{pk}(a_{i,j}, c_j')).$
4: return $(c_i)_{i \leq s}.$

Algorithm 1: Naïve plaintext matrix-encrypted vector multiplication

Input:
$$\mathbf{c}' = (c_i')_{i \leq t} \in R_q^t (c_i' \text{ encrypts the ith entry of } \mathbf{z} = (z_i)_{i \leq t})$$
, and pk; $\mathbf{A} = (a_{i,j}) \in \mathbb{Z}^{s \times t}$.
Output: $\mathbf{c} = (c_i)_{i \leq s}$ with $c_i = \operatorname{Enc}_{pk} \left(\sum_{j=1}^t a_{i,j} z_j \right)$.
1: For $i = 1, \dots, s$ do the following:
2: $c_i \leftarrow \operatorname{Enc}_{pk}(0)$;
3: For $j = 1, \dots, t$, update $c_i := \operatorname{Add}_{pk}(c_i, \operatorname{MulConst}_{pk}(a_{i,j}, c_j'))$.
4: return $(c_i)_{i \leq s}$.

Algorithm 1: Naïve plaintext matrix-encrypted vector multiplication

- Only pt-ct multiplications and ct-ct additions are involved.
- It costs no ct-ct multiplication depth.

The less-than function over S = [0, (p-1)/2] is defined as

$$LT_{S}(x, y) = \begin{cases} 1, & \text{if } 0 \le x < y \le (p-1)/2, \\ 0, & \text{if } 0 \le y \le x \le (p-1)/2. \end{cases}$$

The less-than function over S = [0, (p-1)/2] is defined as

$$LT_{S}(x,y) = \begin{cases} 1, & \text{if } 0 \le x < y \le (p-1)/2, \\ 0, & \text{if } 0 \le y \le x \le (p-1)/2. \end{cases}$$

It can be interpolated by the following polynomial over \mathbb{F}_p of degree p-1:

$$\frac{p+1}{2}(x-y)^{p-1} + \sum_{i=1,odd}^{p-2} \left(\sum_{a=1}^{\frac{p-1}{2}} a^{p-1-i}\right) \cdot (x-y)^{i}.$$

The less-than function over S = [0, (p-1)/2] is defined as

$$LT_{S}(x, y) = \begin{cases} 1, & \text{if } 0 \le x < y \le (p-1)/2, \\ 0, & \text{if } 0 \le y \le x \le (p-1)/2. \end{cases}$$

It can be interpolated by the following polynomial over \mathbb{F}_p of degree p-1:

$$\frac{p+1}{2}(x-y)^{p-1} + \sum_{i=1,odd}^{p-2} \left(\sum_{a=1}^{\frac{p-1}{2}} a^{p-1-i}\right) \cdot (x-y)^{i}.$$

Evaluating the polynomial homomorphically costs at most

$$\sqrt{p-3} + \frac{3}{2}\log_2(p-3) + O(1)$$

ct-ct multiplication depth.

Given an array $\boldsymbol{z} = (z_0, \cdots, z_{t-1})$,

$$\arg\max_{i}(\boldsymbol{z}) = \sum_{j=0}^{t-1} j \cdot \prod_{k=0, k\neq j}^{t-1} (1 - \operatorname{LT}(z_j, z_k)).$$

Given an array $\boldsymbol{z} = (z_0, \cdots, z_{t-1})$,

$$\arg\max_{i}(\boldsymbol{z}) = \sum_{j=0}^{t-1} j \cdot \prod_{k=0, k\neq j}^{t-1} (1 - \operatorname{LT}(z_j, z_k)).$$

Evaluating arg max costs:

• t(t-1)/2 comparisons and

at most

$$\log_2 t + \sqrt{p-3} + \frac{3}{2}\log_2(p-3) + O(1)$$

ct-ct multiplication depth.

1 Background

2 Building blocks

3 Proposed protocol

4 Experimental results

Input of client: A sample $x = (i_1, \dots, i_n)$, sk and pk. **Input of server:** Likelihood and prior information: $(\mathbf{A}_k)_{k \le n}$, $(b_i)_{i \le s}$, and pk. 1: The client encode x to a matrix $(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_n}) \in \{0, 1\}^{t \times n}$. 2: The client encrypts \mathbf{e}_{i_k} and sends the ciphertexts to the server. 3: The server does the following: 4: For $i = 1, \dots, s$, set $c_i \leftarrow \operatorname{Enc}_{pk}(0)$ and $c_i := \operatorname{AddConst}_{pk}(c_i, b_i)$. 5: For $k = 1, \dots, n$, calling Algorithm 1 with input as the ciphertexts of \mathbf{e}_{i_k} , \mathbf{A}_k and pk outputs $(c'_i)_{i \le s}$. Update $c_i := \operatorname{Add}_{pk}(c_i, c'_i)$ for $i = 1, \dots, s$. 6: Calling arg max with input as $\mathbf{c} = (c_i)_{i \le s}$ and pk returns c. 7: The server sends c to the client. 8: The client decrypts c to $y = \operatorname{Dec}_{sk}(c)$.

Protocol 1: Privacy-preserving naïve Bayes classifier

Input of client: A sample x = (i₁, ..., i_n), sk and pk.
Input of server: Likelihood and prior information: (A_k)_{k≤n}, (b_i)_{i≤s}, and pk.
1: The client encode x to a matrix (e_{i1}, ..., e_{in}) ∈ {0,1}^{t×n}.
2: The client encrypts e_{ik} and sends the ciphertexts to the server.
3: The server does the following:
4: For i = 1, ..., s_i set c_i ← Enc_{pk}(0) and c_i := AddConst_{pk}(c_i, b_i).
5: For k = 1, ..., n, calling Algorithm 1 with input as the ciphertexts of e_{ik}, A_k and pk outputs (c'_i)_{i≤s}. Update c_i := Add_{pk}(c_i, c'_i) for i = 1, ..., s.
6: Calling arg max with input as c = (c_i)_{i≤s} and pk returns c.
7: The server sends c to the client.
8: The client decrypts c to y = Dec_{sk}(c).

Protocol 1: Privacy-preserving naïve Bayes classifier

- No interaction during classification phase (Step 3–6)
- Secure classification without sacrificing privacy, assuming secure HE

1 Background

- **2** Building blocks
- **3** Proposed protocol
- **4** Experimental results

Data set:

- **s** = 3, n = 4, t = 5
- 150 samples = 120 for training (80%) + 30 for testing
- HElib parameters:
 - p = 37, m = 14539 ($\implies \ell = 1980$ slots), log $q \approx 387$
 - The security parameter $\lambda pprox 100$
- Performance (Ubuntu 20.04/Intel i7-10750H/16GB):
 - 5.42s for 30 testing samples
 - ~ 0.18 s for each
 - Supporting at most 1980 testing samples
 - Amortized costs ≈ 2.7ms per sample
- Accuracy: $\approx 97\%$

³http://archive.ics.uci.edu/ml

Jingwei Chen (CIGIT, CAS)

Data set:

- s = 2, n = 9, t = 10
- 683 samples = 478 for training (70%) + 205 for testing

HElib parameters:

- **p** = 113, $m = 12883 \iff \ell = 3960$ slots), log $q \approx 382$
- \blacksquare The security parameter $\lambda \approx 100$
- Performance (Ubuntu 20.04/Intel i7-10750H/16GB):
 - 4.75s for 205 testing samples
 - \sim 23ms for each
 - Supporting at most 3960 testing samples
 - Amortized costs ≈ 1.2ms per sample
- Accuracy: $\approx 97\%$

³http://archive.ics.uci.edu/ml

Jingwei Chen (CIGIT, CAS)

Conclusion

- We proposed a privacy-preserving naïve Bayes classifier based on BGV.
- \blacksquare R-LWE based LHE \Longrightarrow secure against quantum attackers
- Argmax of encrypted arrays \implies non-interactive
- Batching \implies efficient

Conclusion

- We proposed a privacy-preserving naïve Bayes classifier based on BGV.
- R-LWE based LHE \implies secure against quantum attackers
- Argmax of encrypted arrays \implies non-interactive
- Batching \implies efficient

Future work

- More efficient
- More classifiers

Conclusion

- We proposed a privacy-preserving naïve Bayes classifier based on BGV.
- R-LWE based LHE \implies secure against quantum attackers
- Argmax of encrypted arrays ⇒ non-interactive
- Batching \implies efficient

Future work

- More efficient
- More classifiers

The full version is available at

https://www.arcnl.org/jchen/download/ppnb_full.pdf

