
Springer Nature 2021 LATEX template

Non-interactive privacy-preserving näıve Bayes classifier from

leveled fully homomorphic encryption

Jingwei Chen1,2, Yong Feng1,2, Yang Liu3*, Wenyuan Wu1,2 and Guanci Yang4

1Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing
Institute of Green and Intelligent Technology, CAS, Chongqing, 400714, China.

2Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714,
China.

3*College of Information Science and Engineering, Chongqing Jiaotong University,
Chongqing, 400074, China.

4Key Laboratory of Advanced Manufacturing Technology of Ministry of Education,
Guizhou University, Guiyang, 400074, China.

*Corresponding author(s). E-mail(s): liuyang13@cqjtu.edu.cn;

Abstract

In this paper, we propose a privacy-preserving näıve Bayes classifier based on leveled fully homomor-
phic encryption schemes. The classifier runs on a server that is also the owner of the model, with
input as encrypted data from a client. The classifier produces encrypted classification results, which
can only be decrypted by the client, whereas the model is only accessible to the server itself. There-
fore, the classifier does not leak private information on either the server’s model or the client’s data
and results. More importantly, the classifier does not require any interactions between the server and
the client during the classification phase. The main technical ingredient is an algorithm to compute
the maximum index of an encrypted array homomorphically, which does not require any interactions.
The proposed classifier is implemented using HElib. Experiments show the accuracy and efficiency of
our classifier. For instance, the average cost can achieve about 34ms per sample for a real data set in
UCI Machine Learning Repository with the security parameter about 100 and accuracy about 97%.

Keywords: privacy-preserving machine learning, näıve Bayes classifier, fully homomorphic encryption, BGV,
HElib

1 Introduction

Over the past decade, Machine Learning as a
Service has been involved in various fields, from
academia to industry. A typical application sce-
nario is that the model vendor uses a large amount
of user data to train the model and then uses the
trained model to infer/predict some results based

on data supplied by clients. However, as secu-
rity incidents such as data breaches continue to
occur, the demand for privacy-preserving MLaaS
is rapidly increasing. On the one hand, the model
owner is unwilling to leak information about the
model. On the other hand, the data owner is reluc-
tant to leak information about the data as well.
To resolve this contradiction, privacy-preserving
machine learning is proposed.

1



Springer Nature 2021 LATEX template

2

In this paper, we consider the framework pre-
sented in [1] for privacy-preserving classifiers. As
shown in Fig. 1, each shaded box indicates pri-
vate data that should be accessible to only one
party: the model to the server and the sample data
and classification result to the client. The frame-
work in Fig. 1 happens quite often in practice. For
instance, the server might be a big-data service
provider with a predictive model for a specific dis-
ease, and the client might be a hospital that needs
to diagnose many potential cases every day. Fol-
lowing the framework, the hospital first sends the
encrypted samples to the service provider for a
diagnosis. The service provider runs the classifier
with input as its model and the received encrypted
samples to obtain an encrypted diagnosis result,
and sends it to the hospital. The hospital decrypts
it to disclose the diagnosis result.

model classifier samples

results

server (S) client (C)

Fig. 1 Framework of privacy-preserving classifiers

In particular, we present a privacy-preserving
näıve Bayes classifier (Protocol 1) based on leveled
fully homomorphic encryption schemes. The lev-
eled fully homomorphic encryption schemes used
in Protocol 1 allow us to evaluate functions with a
bounded multiplicative depth on encrypted data,
such as BGV [2] and BFV [3, 4]. These schemes
are based on the Learning With Errors over Rings
(RLWE) assumption [5] and hence thought to be
post-quantum safe. Based on the RLWE assump-
tion and the underlying leveled fully homomorphic
encryption schemes, we prove that Protocol 1
is correct and secure in the honest-but-curious
(semi-honest or passive) model.

Protocol 1 is a minimally interactive protocol.
The sample owner (client) encrypts its data x to
be predicted as a ciphertext c and sends c to the
model owner (server). After receiving the cipher-
text c, the server evaluates the model using the
client’s public key, with input as the encrypted
data c. The server sends the resulting ciphertext to

the client, and the client decrypts the ciphertext
using itself’s secret key to specify in which class
x lies. Thanks to an algorithm that computes a
ciphertext of the maximum index (i.e., the index of
the maximum) of an encrypted array (Algorithm
3), no interaction between the client and the server
happens during the classification phase (Step 3 in
Protocol 1).

We implement Protocol 1 using the C++
homomorphic encryption library HElib [6] and
test for the Iris and Wisconsin Breast Cancer
(WBC) data set in UCI Machine Learning Repos-
itory [7]. Experiments show that Protocol 1 is
comparable to existing privacy-preserving näıve
Bayes classifiers in literature. For example, with
security parameter 100, the average cost of our
classifier is 214ms and 34ms per sample for the Iris
and WBC data sets, respectively.

Related work

It seems challenging to list all literature on
privacy-preserving protocols for classifiers. We
refer to [1, 8, 9] for good surveys. Here we only
focus on those privacy-preserving näıve Bayes
classifiers based on homomorphic encryption.

Näıve Bayes classifiers is a simple but powerful
algorithm to predict the category label of unclas-
sified samples; see, e.g., [10]. Bost et al. proposed
in [1, Sec. VI] the first efficient privacy-preserving
protocols for näıve Bayes classifier based on the
Quadratic Residuosity (QR) [11] and Paillier [12]
cryptosystems, which are known to be broken by
quantum computers. Li et al. proposed in [13]
a secure näıve Bayes classifier for four parties,
without experimental results reported. Later on,
Kim et al. [14] adapted Li et al.’s framework
using the homomorphic encryption scheme pre-
sented by Brakerski, Gentry, and Vaikuntanathan
(BGV) [2]. Yasumura et al. [15] and Sun et al. [16]
also gave privacy-preserving protocols for näıve
Bayes classification based on BGV. In addition,
Wood et al. presented in [17] a private nav̈e
Bayes classifier based on a private fully homo-
morphic encryption scheme proposed by Gribov,
Kahrobaei, and Shpilrain [18]. While all of these
privacy-preserving näıve Bayes classifiers require
interactions among participants during the classi-
fication phase (the classifier in Fig. 1), Protocol
1 presented in this paper does not require any



Springer Nature 2021 LATEX template

3

interactions at all. For most of them, interac-
tions are needed to compute the maximum index
of an encrypted array. Instead, we present a
non-interactive algorithm (Algorithm 3), which
makes our protocol non-interactive. Furthermore,
being different from those protocols based on non-
quantum-resistant assumptions, our used leveled
fully homomorphic cryptosystem is BGV or BFV,
which are based on the RLWE assumption [5] and
hence thought to be post-quantum safe.

This paper was presented in part at the 4th
EAI International Conference on Security and Pri-
vacy in New Computing Environments [19]. In this
paper, a rigorous proof for the security of Proto-
col 1 and an extensive experimental study on the
performance are supplemented.

Road-map

In Section 2, we give a brief introduction to the
näıve Bayes classifier, homomorphic encryption,
and adversarial model. We present several build-
ing blocks in Section 3 for our classifier, including
the main technical ingredient, Algorithm 3. In
Section 4, we propose a privacy-preserving näıve
Bayes classifier and prove its correctness and its
security in the passive (or honest-but-curious [20])
model. In Section 5, we report extensive experi-
mental results on our implementation of Protocol
1.

2 Preliminaries

In this section, we give some backgrounds useful
for the rest of this paper.

2.1 Näıve Bayes classifier

Näıve Bayes classifier is based on the assumption
that all features are conditional independent. Con-
sider a data set with s categories 1, · · · , s and n
featuresX1, · · · , Xn, where each featureXk has at
most t different values 1, 2, · · · , t. Under the condi-
tional independence assumption, the classification
of a sample x = (x1, · · · , xn) is

s∗ = arg max
i=1,...,s

Pr[Y = i]

n∏
k=1

Pr[Xk = xk|Y = i],

where Pr[Y = i] is the probability that each class
i occurs, i.e., the prior probability, and Pr[Xk =

xk|Y = i] is the probability of the kth feature
Xk to be xk ∈ {1, 2, · · · , t} when x belongs to
category i, i.e., the likelihood. As in [1], we only
deal with the case that the domain of the fea-
ture values (the xi’s) is discrete and finite, so the
Pr[Xk = xk|Y = i]’s are probability masses.

In addition, it is a common choice to use the
Laplacian correction (see, e.g., [33, page 162]) for
smoothing the probability estimation.

2.2 The RLWE assumption

The security of many efficient FHE schemes,
including BGV [2], BFV [3, 4], CKKS [21],
depends on the RLWE assumption or its variants.
For more details, we refer the reader to [5].

Definition 1 (RLWE) For security parameter λ, let
Φm(x) be the m-th cyclotomic polynomial with degree
n = φ(m). Let R = Z[x]/⟨Φm(x)⟩ and let Rq =
R/qR. Let χ be a distribution over R. The RLWEm,q,χ

problem is to distinguish between the following two
distributions: In the first distribution, one samples
(ai, bi) uniformly from R2

q . In the second distribution,
one first draw s ← Rq uniformly and then sample
(ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ,
and setting bi = ai ·s+ei. The RLWEm,q,χ assumption
is that the RLWEm,q,χ problem is infeasible.

2.3 Leveled fully homomorphic
encryption

Fully homomorphic encryption schemes allow
arithmetic circuits to be evaluated directly on
ciphertexts [22, 23]. Since Gentry’s seminal work
[23], multiple HE schemes have been designed,
such as BGV [2], BFV [3, 4], CKKS [21], FHEW
[24], TFHE [25]. Each of them has its fea-
tures. For instance, BGV and BFV are good at
performing large vectorial arithmetic operations,
CKKS supports floating-point computations, and
FHEW and TFHE run bootstrapping for one
bit extremely fast but slow for arithmetic oper-
ations. As näıve Bayes classifiers require many
integer arithmetic operations, we choose BGV or
BFV as the leveled fully homomorphic encryp-
tion schemes, with parameters supporting integer
arithmetic circuits of a certain bounded depth.

For completeness, we briefly describe the lev-
eled fully homomorphic encryption schemes used
in this paper. We restrict to those RLWE-based



Springer Nature 2021 LATEX template

4

schemes. In such schemes, the plaintext space is
Rp = Zp[x]/⟨Φm(x)⟩ and the ciphertext space is
Rq = Zq[x]/⟨Φm(x)⟩, where Φm(x) is the m-th
cyclotomic polynomial, p is a prime number, and
q ≫ p is an integer. Both of the BGV [2] and the
BFV [3, 4] schemes have this structure.

Typically, a leveled fully homomorphic encryp-
tion scheme FHE can be described by the following
randomized algorithms:

• FHE.Setup(1λ). Given a security parameter λ as
input, outputs parms.

• FHE.KeyGen(parms). Output a secret key sk = s
and the corresponding public key pk. (For con-
venience, we let pk also include one or more
evaluation keys ek.)

• FHE.Encpk(b). Given a message b ∈ Rp, outputs
a ciphertext c ∈ Rq.

• FHE.Decsk(c). Given a ciphertext c ∈ Rq, out-
puts a message b ∈ Rp.

• FHE.Evalpk(C, (c1, · · · , ck)). Given an arith-
metic circuit C of a function f with k
input wires, and input c1, · · · , ck with ci ←
FHE.Encpk(bi), outputs a ciphertext c such that
Pr[FHE.Decsk(c) ̸= f(b1, · · · , bk)] = negl(λ).

FHE is said to be compact if the size of the
output of FHE.Eval is not more than polynomial in
λ and is independent of f . FHE is said to be secure
if it is IND-CPA secure and weakly circular secure,
which means that the scheme remains secure even
if the adversary is given encryptions of the bits of
the secret key. We say that FHE achieves circuit
privacy if the distribution of the outputs of any
fixed homomorphic evaluation is indistinguishable
from the distribution of fresh encryptions of the
plaintext outputs.

2.3.1 Homomorphic evaluation

Let c1 and c2 be two ciphertexts of two plain-
texts b1 and b2 under the same secret key sk.
Suppose that the noise of c1 and c2 is bounded
from above by B. The addition (FHE.Add) of the
two ciphertexts is typically c+ = c1 + c2, which
is a ciphertext of b1 + b2 under the secret key sk.
The noise of c+ is at most 2B. For multiplication
(FHE.Mul), c× = c1 ⊗ c2 is typically a ciphertext
of b1 · b2 under a new secret key sk⊗ sk with larger
dimension, where ⊗ is the usual tensor product.
The noise of c× can only be bounded from above
by B2. To keep the dimension of the secret key

and to decrease the noise of evaluated cipher-
text, a refresh procedure FHE.Refresh (consisting
of key switching and modulus switching) follows
every homomorphic addition and multiplication.
Of course, one can call FHE.Refresh only if neces-
sary for efficiency. Note that the public key pk of
FHE also includes all keys for FHE.Refresh. Theo-
retically, the cost of each homomorphic addition or
multiplication increases fast as L grows, where L is
the circuit depth of the function f to be evaluated.
Besides, FHE also supports plaintext-ciphertext
addition (FHE.AddConst) and plaintext-ciphertext
multiplication (FHE.MulConst).

2.3.2 Batching

Recall the plaintext space Rp = Zp[x]/⟨Φm(X)⟩.
Let d be the multiplicative order of p modulo
m, and ϕ(m) be the Euler’s totient function.
Then d divides ϕ(m) and Rp

∼= Fℓ
pd with ℓ =

ϕ(m)/d. Therefore each plaintext can be seen as
a packed message with ℓ slots. From this view,
each homomorphic operation on a ciphertext is
equivalent to the same operation on all slots inde-
pendently and simultaneously. This batching tech-
nique [26, 27] significantly decreases the amortized
cost (i.e., the total cost divided by ℓ) of homo-
morphic encryption schemes based on RLWE.
For batching, FHE usually supports data packing
(FHE.Encode), data rotating (FHE.Rotate), and
data shifting (FHE.Shift). Based on these oper-
ations, one can build some advanced functions.
For instance, FHE.TotalSum converts a ciphertext
that encrypts (z1, · · · , zt) into a ciphertext that
encrypts (y, · · · , y) with y =

∑t
i=1 zi.

2.4 Adversarial model

Our protocol only involves the client and the
server, labeled as parties C and S, respectively.
To show Protocol 1 preserves the privacy of both
parties, we work in the honest-but-curious (semi-
honest or passive) model as described in [20, Sec.
7.2]. The materials presented here are mainly
taken from the full version of [1].

Let f = (fC , fS) be a (probabilistic) poly-
nomial function and Π a protocol computing
f . C and S want to compute f(a, b) where
a is C’s input and b is S’s input, using Π
and with the security parameter λ. The view
of party C during the execution of Π is the



Springer Nature 2021 LATEX template

5

tuple VC(λ, a, b) = (1λ; a; rC ; mC
1 , · · · ,mC

t )
where r is C’s random tape and mC

1 , · · · ,mC
t

are the messages received by C. We define the
view of S similarly. The outputs of parties C
and S for the execution of Π on input (a, b)
as OutputΠC(λ, a, b) and OutputΠS (λ, a, b), which is
implicit in the party’s own view of the execu-
tion, and the global output as OutputΠ(λ, a, b) =
(OutputΠC(λ, a, b),Output

Π
S (λ, a, b)).

To ensure security, we have to show that what-
ever C can compute from its interactions with S
can be computed from its own input and output,
which leads us to the following security definition.

Definition 2 ([20, Def. 7.2.1]) The two-party proto-
col Π securely computes the function f if there exist
two probabilistic polynomial-time algorithms SC and
SS such that for every possible input a, b of f ,

{SC(1λ, a, fA(a, b)), f(a, b)}

≡c{VC(λ, a, b),OutputΠ(λ, a, b)}
and

{SS(1
λ, a, fB(a, b)), f(a, b)}

≡c{VS(λ, a, b),OutputΠ(λ, a, b)}
where ≡c means computational indistinguishability
against probabilistic polynomial time adversaries with
negligible advantage in the security parameter λ.

To simplify the notation and proof, we omit the
security parameter. As we only consider determin-
istic functions f , we can simplify the distributions
we want to show being indistinguishable: when f
is deterministic, to prove the security of Π that
computes f , we only have to show that

SC(a, fA(a, b)) ≡c VC(a, b),

SS(b, fB(a, b)) ≡c VS(a, b).
(1)

3 Building blocks

We now describe a few necessary building blocks
that will be used to build our classifier. Note that
all the following algorithms will be executed on the
server and that the owner of pk (the public key)
in these algorithms is not the server but the client
since we follow the framework given in Fig. 1. For
simplicity, we use the functions without explicitly
showing the name of the scheme FHE in the rest
of this paper. For instance, we use Add to replace
FHE.Add.

3.1 Plaintext matrix-encrypted
vector multiplication

Matrix-vector multiplication is reasonably com-
mon in practice. Here we focus on plaintext
matrix-encrypted vector multiplication. Given a
plaintext matrix A ∈ Zs×t and ciphertexts of a
vector z ∈ Zt, our goal is to obtain ciphertexts of
Az. We present two methods based on different
ways to encode a vector.

3.1.1 Näıve encoding

To encrypt a vector z = (zi)i≤t ∈ Zt, one can
encrypt each entry zi of z to a ciphertext. The
encryption of z is a vector c′ = (c′i)i≤t ∈ Rt

q of
ciphertexts, whose i-th entry c′i is a ciphertext of
zi. Algorithm 1 computes a vector in Rs

q as the
encryption of Az. Obviously, Algorithm 1 costs
no multiplicative depth.

Algorithm 1 Näıve plaintext matrix-encrypted
vector multiplication

Input: c′ = (c′i)i≤t ∈ Rt
q (c′i encrypts the ith

entry of z = (zi)i≤t), and public key pk;
A = (ai,j) ∈ Zs×t.

Output: (ci)i≤s with ci = Encpk(
∑t

j=1 ai,jzj).

1. For i = 1, · · · , s do the following:
(a) ci ← Encpk(0);
(b) For j = 1, · · · , t

(i) Update

ci := Addpk(ci,MulConstpk(ai,j , c
′
j)).

2. Return (ci)i≤s.

3.1.2 Packed encoding

Instead of the above element-wise method, we can
pack the vector z ∈ Zt into t slots of one plain-
text for batching in Sec. 2.3.2, and encrypt it
to only one ciphertext c ∈ Rq, which leads to
Algorithm 2. Note that FHE.TotalSum costs no
multiplicative depth since it uses only FHE.Rotate
and FHE.Add, and FHE.Rotate costs no multiplica-
tive depth (see, e.g., [28]). Thus, Algorithm 2 costs
no multiplicative depth as well.



Springer Nature 2021 LATEX template

6

Algorithm 2 Pakced plaintext matrix-encrypted
vector multiplication

Input: c ∈ Rq that encrypts u ∈ Rp with u =
Encode(z), and public key pk; A = (ai,j) ∈
Zs×t.

Output: (ci)i≤s with ci = Encpk(
∑t

j=1 ai,jzj).

1. For i = 1, · · · , s do the following:
(a) Encode the i-th row ai of A as vi =

Encode(ai);
(b) Compute

ci = TotalSumpk(MulConstpk(vi, c))).

2. Return (ci)i≤s.

3.2 Argmax of an encrypted array

We first recall a recent comparator presented by
Iliashenko and Zucca in [29], which supports com-
parison operations for BGV and BFV, and then
present our method to compute the index of the
maximum of an encrypted array.

3.2.1 Comparison

Essentially, the comparison method for encrypted
arrays presented in [29] homomorphically evalu-
ates the Lagrange interpolated polynomial of the
less-than function over S = [0, (p − 1)/2] defined
as follows:

LTS(x, y) =

{
1, if 0 ≤ x < y ≤ (p− 1)/2,
0, if 0 ≤ y ≤ x ≤ (p− 1)/2.

It can be interpolated by the following polynomial
over Fp of degree p − 1 by [29, Thm. 3]: p+1

2 (x −
y)p−1 +

∑p−2
i=1,odd

(∑ p−1
2

a=1 a
p−1−i

)
· (x − y)i. This

polynomial can be evaluated within

√
p− 3 +

3

2
log2(p− 3) +O(1) (2)

multiplicative depth.

3.2.2 Argmax

Based on the less-than function LT, we now
present an algorithm (Algorithm 3) to com-
pute the maximum index of an encrypted array,
denoted argmax.

For a given array z = (z1, · · · , zs), Algorithm
3 firstly computes a comparison matrix L = (ℓi,j)
with

ℓi,j =

 1− LT(zi, zj) if i < j,
1 if i = j,
LT(zj , zi) if i > j.

For instance, if z = (7, 6, 2, 4, 5) the matrix L ∈
{0, 1}5×5 is given by

1 1 1 1 1
0 1 1 1 1
0 0 1 0 0
0 0 1 1 0
0 0 1 1 1

 .

It is easy to see that there exists only one row
with all entries one, and the index of that row is
argmaxi(z). Equivalently, we have

argmax
i

(zi)1≤i≤s =

s∑
j=1

j ·
s∏

k=1

ℓj,k,

which results in Algorithm 3.

Algorithm 3 Encrypted maximum index of an
encrypted array

Input: c = (c1, · · · , cs) ∈ Rt
q (ci encrypts the i-th

entry of z = (z1, · · · , zs)) and public key pk.
Output: A ciphertext c ∈ Rq that encrypts

argmax(z).

1. Set c← Encpk(0).
2. For i = 1, · · · , s do the following:
(a) Set c′ to be

s∏
k=1,k ̸=j

AddConstpk(1,MulConstpk(−1, LTpk(cj , ck))).

(b) Update c := Addpk(c,MulConstpk(j, c
′)).

3. Return c.

Note that it requires at most s(s − 1)/2 com-
parisons to construct the comparison matrix L.
Furthermore, one would better use some recur-
sive methods in practice to compute the encrypted
product in Step 22a of Algorithm 3 for saving mul-
tiplicative depth. From Eq. (2), Algorithm 3 costs



Springer Nature 2021 LATEX template

7

at most⌈
log2 s

⌉
+
√

p− 3 +
3

2
log2(p− 3) +O(1)

multiplicative depth to compute the argmax of an
encrypted array.

4 Privacy-preserving näıve
Bayes classification

In this section, we present our privacy-preserving
näıve Bayes classifier and prove its correctness and
security.

4.1 Preparing the model

If the domain of the feature values is continuous,
we first find a bound B on the values and then
discretize them by splitting [−B, B] into several
equal intervals. For example, if the domain of the
kth feature Xk is continuous on [−1, 1], then one
can discretize Xk as Xk = 0 if Xk ∈ [−1, 0) and
Xk = 1 if Xk ∈ [0, 1]. This discretization tech-
nique enables our classifier to deal with continuous
features as well, possibly at the cost of decreasing
the prediction accuracy.

For convenience, we limit the values of fea-
tures x1, · · · , xn in {1, 2, · · · , t}. Furthermore, for
numerical stability, we work with the logarithm of
the probability:

s∗ = arg max
i=1,...,s

{
log Pr[Y = i]

+

n∑
k=1

log Pr[Xk = xk|Y = i]

}
,

(3)

where xk ∈ {1, · · · , t}. Another convenient simpli-
fication is to take the numbering of the s classes
as contiguous integers from 1 to s. Then s∗ is pre-
cisely the index of the maximum over the s values
in (3).

Additionally, since the BGV encryption
scheme works with integers, one needs to convert
each logarithm of probability in (3) to an integer
by multiplying it with a certain number K > 0
and rounding it to the closest integer. A similar
shifting technique is already used and analyzed in,
e.g., [1, 30].

In summary, for a data set with s categories
and n features (each feature has at most t differ-
ent values), the prior probability in the model will
be converted into a vector b = (b1, · · · , bs) ∈ Zs,
where bi is obtained by roundingK ·log(Pr[Y = i])
for an appropriate scaling integer K. The likeli-
hoods will be converted into nmatricesAk ∈ Zs×t

for k = 1, · · · , n, where the (i, j)-entry of Ak is
derived by rounding K · log Pr[Xk = j|Y = i] with
the same integer K.

4.2 Privacy-preserving Näıve bayes
Classifier

To resolve the privacy concerns, the client should
only obtain the classification result s∗ without
learning any information about the prior proba-
bility and likelihood, and the server should learn
nothing about the client’s data x.

The client has data x = (x1, · · · , xn) with
xk ∈ {1, · · · , t} and wants the server to predict
which class x is in using a näıve Bayes classi-
fier without leaking any information about x. One
choice of the client is to encrypt x using him-
self’s public key. However, since x is encrypted,
the server cannot decide which entry of Ak should
be chosen. For instance, the first feature of x is
x1, i.e., X1 = x1. To access the information about
Pr[X1 = x1|Y = i] in A1, we need to select the
(i, x1) entry of A1. However, as the first entry of
x, x1 is only available in encrypted form on the
server-side. To get around this obstacle, one can
encode the sample x as a 0-1 matrix

X = (ex1
, · · · , exn

) ∈ {0, 1}t×n, (4)

where ej is the t-dimensional vector whose jth
entry is one and all others are zero. Now, to select
the xk-th row of a matrix Ak ∈ Zs×t is just to
computeAkexk

. If exk
is in encrypted form, this is

a plaintext matrix-encrypted vector multiplication
discussed in Section 3.

Now we are ready to present our privacy-
preserving näıve Bayes classifier as Protocol
1, assuming that FHE achieves circuit privacy.
Clearly, the classification phase (Step 3) of Pro-
tocol 1 does not require any interactions between
the server and the client.

We prove the security of our protocol using
the secure two-party computation framework for
passive adversaries. Roughly speaking, a passive



Springer Nature 2021 LATEX template

8

adversary tries to learn as much private informa-
tion as possible from the other party; however,
this adversary faithfully follows the prescribed
protocol.

Proposition 1 Protocol 1 is correct and secure in the
honest-but-curious model.

Protocol 1 Privacy-preserving näıve Bayes clas-
sifier
Input of the client: A sample x = (x1, · · · , xn)
to be classified, the secret and public key sk and
pk.
Input of the server: The model consisting of
the likelihood information (Ak)k≤n and the prior
information b = (bi)i≤s, and the client’s pk.

1. The client encodes x to a matrix X as in (4).
2. The client encrypts the column vectors exk

of
X for k = 1, · · · , n and sends the ciphertexts
to the server.

3. The server does the following:
(a) For i = 1, · · · , s, set ci ← Encpk(0) and

update ci := AddConstpk(ci, bi).
(b) For k = 1, · · · , n, calling Algorithm 1 or 2

with input as Ak, pk, and the ciphertexts of
exk

received from the client, outputs (c′i)i≤s.
(c) Update ci := Addpk(ci, c

′
i) for i = 1, · · · , s.

(d) Calling Algorithm 3 with input as c =
(ci)i≤s and pk returns c.

4. The server sends c to the client.
5. The client decrypts c to y = Decsk(c) and

outputs y.

Proof The correctness follows directly from that what
the server does is to evaluate the following procedure
homomorphically:

1. Set y := b, the information of the prior probability.
2. For k = 1, · · · , n, set y := y +Ak · exk .

3. Return y as the index of the maximum entry of

y = (yi)0≤i≤s−1.

We prove the security by Eq. (1). The client’s view
is

VC = (pk, sk,x; c, y).

The simulator SC , on input (pk, sk,x, y′) with

y′ = arg max
i=1,...,s

(
n∑

k=1

Akexk + b

)
,

generates a ciphertext c′ = Encpk(z), where z is
a random integer and outputs (pk, sk,x; c′, y′). As
the integer y that the client receives is its out-
put, and as the given FHE scheme is semantically
secure and achieves circuit privacy, the distributions
SC = (pk, sk,x; c′, y′) and VC = (pk, sk,x; c, y) are
computationally indistinguishable.

The view of the server is

VS = ((Ak)k, b, pk; X
′, c),

where X ′ is ciphertexts that encrypt X. The simula-
tor SS , on input ((Ak)k, b, pk),

- generates a random 0-1 matrix Y of size t × n
and computes the ciphertexts Y ′ that encrypt
Y ,

- generates a ciphertext c′ = Encpk(z), where z is
a random integer,

- outputs ((Ak)k, b, pk; Y
′, c′).

The distributions VS and SS are computationally
indistinguishable, because of the same reason for VC
and SC . This completes the proof. □

Protocol 1 assumes that FHE is with cir-
cuit privacy. For fully homomorphic encryption
schemes, circuit privacy can be achieved using,
e.g., the techniques of [31]. In practice, the slightly
weaker notion of (statistical) function privacy
[32] suffices, and is easier to achieve in the lev-
eled fully homomorphic encryption setting using
re-randomization and noise flooding, where the
server re-randomizes the output ciphertexts by
homomorphically adding a ciphertext of zero with
a large noise [23, 31].

5 Implementation and
experiments

We have implemented three variants of Protocol
1 in C++ using HElib (v2.1.0) [6]. The first two
variants come from the different choices in Step
33b of Protocol 1. These two variants deal with
only one sample at a time. The third variant comes
from the batching technique (see Section 2.3.2),
which we call the batching variant. It is based on
the same encoding scheme as Algorithm 1. Assume
that the selected parameters support ℓ plaintext
slots. In the batching variant, we pack the infor-
mation of a sample into one slot to deal with at
most ℓ samples at a time.

In this section, we will report the predic-
tion accuracy, communication cost and calculation



Springer Nature 2021 LATEX template

9

time of our implementations of Protocol 1. All
experiments run serially (using only one thread)
on a laptop with a Ubuntu 20.04 OS as Win-
dows Subsystem for Linux, 2.60 GHz Intel Core
i7-10750H CPU (64 bit) with 16 GB RAM.

5.1 Data set

The Iris and Wisconsin Breast Cancer (WBC)
data sets in UCI Machine Learning Repository [7]
were used in this experiment.

The Iris data set has 150 samples classified
into three categories (i.e., s = 3). Each sample
has four features (i.e., n = 4), and each feature
takes at most five different values (i.e., t = 5).
Our experiment used 120 samples (80%) for train-
ing the model and the remaining 30 samples for
prediction.

For WBC, the dataset has 683 effective sam-
ples, classified into two categories, i.e., s = 2.
There are nine features for each sample, and each
feature may take at most ten different values, i.e.,
n = 9 and t = 10. Among these 683 samples,
478 samples are used for training (70%), and the
remaining 205 samples are used to test.

5.2 Parameter setting

For Iris, the scaling factor in Section 4.1 is set
to be one, i.e., K = 1, which leads that the
entries of the rounded logarithm of likelihood Ak

for k = 1, · · · , 4 are integers between −4 and 0,
and the entries of the rounded logarithm of the
prior probability are bounded by 1. Hence the
resulting integers to be compared must be at most
4 · 4+1 = 17, which implies that p = 37 is enough
for our purpose. In addition, m is fixed to 14539.
In this setting, each plaintext in Rp has ℓ = 1980
slots.

For WBC, K is also set to be 1. Hence the
entries of the rounded logarithm of likelihood Ak

for k = 1, · · · , 9 are integers between −6 and 0,
and the entries of the rounded logarithm of the
prior probability are bounded by 2. Hence the
resulting integers to be compared must be at most
6·9+2 = 56, which implies that p = 113 is enough
for our purpose. In addition, m is fixed to 12883.
In this setting, each plaintext in Rp has ℓ = 3960
slots.

For both data sets, the standard deviation σ
of the error distribution in the encryption scheme

is fixed to the default value in HElib, i.e., σ = 3.2,
which is an approximation of 8/

√
2π.

5.3 Accuracy

Our experiment shows that the classification accu-
racy of our implementation of Protocol 1 based on
HElib is about 97% for both Iris and WBC and
for all three variants. Note that this accuracy is
almost the same as the plaintext (unencrypted)
näıve Bayes classifier.

5.4 Communication

Although Protocol 1 does not require interactions
between the server and client during the classifica-
tion phase, it does require one interaction, which
consists of that the client sends the encrypted
data to the server and that the server sends the
encrypted result to the client.

Table 1 counts the communication cost of
the batching variant. The column labeled “Data”
gives the size of the ciphertext file for all samples
to be classified (i.e., 30 samples for Iris and 205
samples for WBC), and the “Result” column gives
the size of the resulting ciphertext for all samples.
For Iris and WBC, the amortized communica-
tion costs of the batching variant are 22.15K
and 46.09KB, respectively. Table 2 compares the
transferred data sizes among the batching variant
of Protocol 1 and some other existing privacy-
preserving näıve Bayes classifiers. The star mark
(∗) means that the data is taken directly from the
corresponding reference. For communication cost,
Protocol 1 is not as good as the privacy-preserving
näıve Bayes classifier presented in [1] (based on
the QR and Paillier cryptosystems) but is better
than that in [15] (based on BGV).

5.5 Timing

In Step 33b of Protocol 1, there are two choices
(Algorithm 1 and Algorithm 2) for plaintext
matrix-encrypted vector multiplication. We test
them all, together with the batching variant, and
record their performance. The row named “näıve”
(“packed” resp.) is the performance of Protocol 1
based on Algorithm 1 (Algorithm 2 resp.), and the
row named “batching” is the performance of the
batching variant of Protocol 1 using SIMD. The
columns with “Each sample” give the average exe-
cution time for each sample. All timings with the



Springer Nature 2021 LATEX template

10

Table 1 Communication cost (KB) of Protocol 1

Data Result Data per sample Result per sample
Iris 40,980 2877 1366 96

WBC 180,875 1633 882 8

Table 2 Total communication cost for each sample of WBC

[1] [15] Protocol 1
Transferred data size (KB) 74∗ 4096∗ 890

star mark (∗) are directly taken from the the lit-
erature, in which the taken timings are the best
ones reported. Note that the framework used in
the literature may not be the same as in Fig. 1.

It can be observed from Tables 3 and 4 that
the näıve variant is more efficient than the packed
one, although the timing for encryption is worse.
Overall, the batching variant is the most efficient
one among the three variants of Protocol 1. The
average cost of the batching variant for each sam-
ple of Iris and WBC is about 214ms and 34ms,
respectively. Since the “batching” variant can clas-
sify ℓ = 1980 (3960 resp.) samples simultaneously,
the amortized cost in our setting can be less than
4ms (2ms resp.) per sample for Iris (WBC resp.).

We also compare our implementation with sev-
eral existing privacy-preserving näıve Bayes clas-
sifiers in Tables 3 and 4. For the Iris data set, Kim
et al. [14] reported that their proposed privacy-
preserving näıve Bayes classifier takes 17h40m
on a single CPU core and 5h03m on four CPU
cores. For WBC, Bost et al. [1] reported that their
classifier takes about 0.479s and 14 interactions
per sample. The computation time of the mod-
ified protocol presented in [15] is about 0.732s
per sample. Wood et al. reported that their clas-
sifier takes about 0.402s for each sample. The
classifier presented by Sun et al. [16] takes about
0.141s per sample with SIMD for WBC. Note that
the classifiers presented in [15] and [16] are also
implemented using HElib. Overall, although with
a not-so-good total cost, Protocol 1 is comparable
to existing protocols, especially when the client
has a lot of samples to be classified at a time.

6 Conclusion

In this paper, we attempt to design privacy-
preserving classifier protocols in the client-server
setting. The server owns the model, which should

not be accessible to any other, and the client
also needs to preserve the privacy of the data to
be predicted. As a result, we propose a privacy-
preserving näıve Bayes classifier (Protocol 1)
based on leveled fully homomorphic encryption
schemes, such as BGV and BFV. We show that the
classifier is correct and secure in the honest-but-
curious model. The main feature of our classifier
is that it does not require any interaction between
the client and the server during the classifica-
tion phase. According to experiments with our
implementation based on HElib, the efficiency of
Protocol 1 is comparable to existing ones. An
intriguing direction is to extend the framework in
Fig. 1 to more classifiers such as decision trees,
nearest neighbor classifier, etc.

Acknowledgment

This research was supported partly by National
Key Research and Development Project of China
(2020YFA0712303), Natural Science Founda-
tion of China (61903053), Guizhou Science and
Technology Program [2020]4Y056, Chongqing
Science and Technology Program (cstc2021-
jcyjmsxmX0821, cstc2019yszx-jcyjX0003,
cstc2020yszx-jcyjX0005, cstc2021yszx-jcyjX0004,
KJQN201900702), and Youth Innovation
Promotion Association of CAS (2018419).

Data availability

The datasets generated during and/or analysed
during the current study are available in the UCI
Machine Learning Repository, http://archive.ics.
uci.edu/ml.

Conflict of Interests

The authors declare that they have no conflict of
interest.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Springer Nature 2021 LATEX template

11

Table 3 Timing for Iris (s)

log q λ Enc Argmax Dec Total Each sample
näıve 387 100 16.641 36.457 3.147 93.778 3.126
packed 488 74 4.191 32.299 6.09 405.181 13.506
batching 387 100 0.556 4.571 0.024 6.423 0.214

[14] – – – – – – 18,180∗

Table 4 Timing for WBC (s)

log q λ Enc Argmax Dec Total Each sample
näıve 382 100 464.654 338.236 12.555 1332.812 6.502
packed 476 76 54.299 321.292 23.046 1814.817 8.853
batching 382 100 2.376 1.58 0.397 7.033 0.034

[1] – 100 – – – – 0.479∗

[15] – 119 – – – – 0.732∗

[17] – – – – – – 0.402∗

[16] – 55 – – – – 0.141∗

References

[1] Bost, R., Popa, R.A., Tu, S., Gold-
wasser, S.: Machine learning classification
over encrypted data. In: Proceedings of
the 22nd Annual Network and Distributed
System Security Symposium (February 8-
11, 2015, San Diego, USA). The Internet
Society, Reston (2015). https://doi.org/10.
14722/ndss.2015.23241

[2] Brakerski, Z., Gentry, C., Vaikuntanathan,
V.: (Leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transac-
tions on Computation Theory 6(3), 13–11336
(2014). https://doi.org/10.1145/2633600

[3] Brakerski, Z.: Fully homomorphic encryp-
tion without modulus switching from classi-
cal GapSVP. In: Safavi-Naini, R., Canetti,
R. (eds.) Advances in Cryptology – Proc
CRYPTO 2012 (August 19–23, 2012, Santa
Barbara, CA, USA). Lecture Notes in
Computer Science, vol. 7417, pp. 868–886.
Springer, Heidelberg (2012). http://doi.org/
10.1007/978-3-642-32009-5 50

[4] Fan, J., Vercauteren, F.: Somewhat Practical
Fully Homomorphic Encryption. Cryptology
ePrint Archive https://eprint.iacr.org/2012/
144 (2012)

[5] Lyubashevsky, V., Peikert, C., Regev, O.: On

ideal lattices and learning with errors over
rings. Journal of ACM 60(6), 43–135 (2013).
https://doi.org/10.1145/2535925

[6] HElib:: An implementation of homomorphic
encryption. https://github.com/homenc/
HElib (Accessed in August, 2021)

[7] Dua, D., Graff, C.: UCI Machine Learn-
ing Repository. http://archive.ics.uci.edu/ml
(2017)

[8] Sun, X., Yu, F.R., Zhang, P., Xie, W., Peng,
X.: A survey on secure computation based on
homomorphic encryption in vehicular ad hoc
networks. Sensors 20(15), 4253–131 (2020).
https://doi.org/10.3390/s20154253

[9] Wood, A., Najarian, K., Kahrobaei, D.:
Homomorphic encryption for machine learn-
ing in medicine and bioinformatics. Journal
of ACM Computing Surveys 53(4), 70–135
(2020). https://doi.org/10.1145/3394658

[10] Domingos, P., Pazzani, M.: On the opti-
mality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29(2),
103–130 (1997). https://doi.org/10.1023/A:
1007413511361

[11] Goldwasser, S., Micali, S.: Probabilistic
encryption & how to play mental poker
keeping secret all partial information. In:

https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.1145/2633600
http://doi.org/10.1007/978-3-642-32009-5_50
http://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/2535925
https://github.com/homenc/HElib
https://github.com/homenc/HElib
http://archive.ics.uci.edu/ml
https://doi.org/10.3390/s20154253
https://doi.org/10.1145/3394658
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361


Springer Nature 2021 LATEX template

12

Rabin, T. (ed.) STOC ’82: Proceedings of
the Fourteenth Annual ACM Symposium
on Theory of Computing (San Francisco,
USA, May 5 - 7, 1982), pp. 365–377. ACM,
New York (1982). https://doi.org/10.1145/
800070.802212

[12] Paillier, P.: Public-key cryptosystems based
on composite degree residuosity classes. In:
Stern, J. (ed.) Advances in Cryptology –
EUROCRYPT ’99 (May 2–6, 1999, Prague,
Czech Republic). Lecture Notes in Computer
Science, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999). https://doi.org/10.1007/
3-540-48910-X 16

[13] Li, X., Zhu, Y., Wang, J.: Secure näıve
bayesian classification over encrypted data
in cloud. In: Chen, L., Han, J. (eds.) Pro-
ceedings of the 10th International Confer-
ence on Provable Security (Nanjing, China,
November 10-11, 2016). Lecture Notes in
Computer Science, vol. 10005, pp. 130–150.
Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47422-9 8

[14] Kim, S., Omori, M., Hayashi, T., Omori,
T., Wang, L., Ozawa, S.: Privacy-preserving
naive Bayes classification using fully homo-
morphic encryption. In: Cheng, L., Leung,
A.C.S., Ozawa, S. (eds.) Neural Informa-
tion Processing – Proceedings of the 25th
International Conference on Neural Infor-
mation Processing (Siem Reap, Cambodia,
December 13–16, 2018). Lecture Notes in
Computer Science, vol. 11304, pp. 349–358.
Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04212-7 30

[15] Yasumura, Y., Ishimaki, Y., Yamana, H.:
Secure näıve Bayes classification protocol
over encrypted data using fully homomor-
phic encryption. In: Indrawan-Santiago, M.,
Pardede, E., Salvadori, I.L., Steinbauer, M.,
Khalil, I., Anderst-Kotsis, G. (eds.) Pro-
ceedings of the 21st International Confer-
ence on Information Integration and Web-
Based Applications & Services (Munich, Ger-
many, December 2–4, 2019), pp. 45–54. ACM,
New York (2019). https://doi.org/10.1145/
3366030.3366056

[16] Sun, X., Zhang, P., Liu, J.K., Yu, J., Xie,
W.: Private machine learning classification
based on fully homomorphic encryption.
IEEE Transactions on Emerging Topics in
Computing 8(2), 352–364 (2020). https://
doi.org/10.1109/TETC.2018.2794611

[17] Wood, A., Shpilrain, V., Najarian, K.,
Kahrobaei, D.: Private naive bayes classifica-
tion of personal biomedical data: Application
in cancer data analysis. Computers in Biology
and Medicine 105, 144–150 (2019). https://
doi.org/10.1016/j.compbiomed.2018.11.018

[18] Gribov, A., Kahrobaei, D., Shpilrain, V.:
Practical private-key fully homomorphic
encryption in rings. Groups Complexity
Cryptology 10(1), 17–27 (2018). https://doi.
org/10.1515/gcc-2018-0006

[19] Chen, J., Feng, Y., Liu, Y., Wu, W.,
Yang, G.: Non-interactive privacy-preserving
näıve Bayes classifier using homomorphic
encryption. In: A, B. (ed.) SPNCE: Inter-
national Conference on Security and Pri-
vacy in New Computing Environments
(Qinhuangdao, China, December 10–11,
2021). Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer,
Cham (2022). https://www.arcnl.org/jchen/
download/naiveBayes.pdf

[20] Goldreich, O.: Foundations of Cryptography
– Basic Applications. Cambridge University
Press, Cambridge (2004)

[21] Cheon, J.H., Kim, A., Kim, M., Song, Y.:
Homomorphic encryption for arithmetic of
approximate numbers. In: Takagi, T., Peyrin,
T. (eds.) Proceedings of ASIACRYPT 2017 –
23rd International Conference on the Theory
and Applications of Cryptology and Infor-
mation Security (December 3-7, 2017, Hong
Kong, China), Part I. Lecture Notes in
Computer Science, vol. 10624, pp. 409–437.
Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-319-70694-8 15

[22] Rivest, R., Adleman, L., Dertouzos, M.: On
data banks and privacy homomorphisms. In:
DeMillo, R.A., Dobkin, D.P., Jones, A.K.,

https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-47422-9_8
https://doi.org/10.1007/978-3-319-47422-9_8
https://doi.org/10.1007/978-3-030-04212-7_30
https://doi.org/10.1007/978-3-030-04212-7_30
https://doi.org/10.1145/3366030.3366056
https://doi.org/10.1145/3366030.3366056
https://doi.org/10.1109/TETC.2018.2794611
https://doi.org/10.1109/TETC.2018.2794611
https://doi.org/10.1016/j.compbiomed.2018.11.018
https://doi.org/10.1016/j.compbiomed.2018.11.018
https://doi.org/10.1515/gcc-2018-0006
https://doi.org/10.1515/gcc-2018-0006
https://www.arcnl.org/jchen/download/naiveBayes.pdf
https://www.arcnl.org/jchen/download/naiveBayes.pdf
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15


Springer Nature 2021 LATEX template

13

Lipton, R.J. (eds.) Foundations of Secure
Computation, pp. 165–179. Academic Press,
Atlanta (1978)

[23] Gentry, C.: Fully homomorphic encryption
using ideal lattices. In: Mitzenmacher, M.
(ed.) Proceedings of the Forty-first Annual
ACM Symposium on Theory of Computing
(May 31 - June 2, 2009, Bethesda, USA),
pp. 169–178. ACM, New York (2009). https:
//doi.org/10.1145/1536414.1536440

[24] Ducas, L., Micciancio, D.: FHEW: Bootstrap-
ping homomorphic encryption in less than a
second. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology - Proceedings of
EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Appli-
cations of Cryptographic Techniques, Part I
(April 26-30, 2015, Sofia, Bulgaria). Lecture
Notes in Computer Science, vol. 9056, pp.
617–640. Springer, Heidelberg (2015). https:
//doi.org/10.1007/978-3-662-46800-5 24

[25] Chillotti, I., Gama, N., Georgieva, M.,
Izabachène, M.: TFHE: Fast fully homomor-
phic encryption over the torus. Journal of
Cryptology 33(1), 34–91 (2020). https://doi.
org/10.1007/s00145-019-09319-x

[26] Gentry, C., Halevi, S., Smart, N.P.: Homo-
morphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology – Proc CRYPTO
2012 (August 19–23, 2012, Santa Bar-
bara, USA). Lecture Notes in Computer
Science, vol. 7417, pp. 850–867. Springer,
Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 49, updated implementa-
tion in 2015 is available from http://eprint.
iacr.org/2012/099

[27] Smart, N.P., Vercauteren, F.: Fully homo-
morphic SIMD operations. Designs, Codes
and Cryptography 71(1), 57–81 (2014).
https://doi.org/10.1007/s10623-012-9720-4

[28] Halevi, S., Shoup, V.: Design and implemen-
tation of HElib: a homomorphic encryption
library. Cryptology ePrint Archive https://
eprint.iacr.org/2020/1481 (2020)

[29] Iliashenko, I., Zucca, V.: Faster homomorphic
comparison operations for BGV and BFV.
Proceedings on Privacy Enhancing Technolo-
gies 2021(3), 246–264 (2021). https://doi.
org/10.2478/popets-2021-0046

[30] Tschiatschek, S., Reinprecht, P., Mücke, M.,
Pernkopf, F.: Bayesian network classifiers
with reduced precision parameters. In: Flach,
P.A., De Bie, T., Cristianini, N. (eds.) Pro-
ceedings of ECML PKDD 2012: Joint Euro-
pean Conference on Machine Learning and
Knowledge Discovery in Databases (Bristol,
UK, September 24-28, 2012). Lecture Notes
in Computer Science, vol. 7523, pp. 74–89.
Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33460-3 10

[31] Ducas, L., Stehlé, D.: Sanitization of FHE
ciphertexts. In: Fischlin, M., Coron, J.-S.
(eds.) Advances in Cryptology – EURO-
CRYPT 2016, Part I (Vienna, Austria, May
8-12, 2016). Lecture Notes in Computer
Science, vol. 9665, pp. 294–310. Springer,
Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49890-3 12

[32] Gentry, C., Halevi, S., Vaikuntanathan,
V.: i-Hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T.
(ed.) Advances in Cryptology – CRYPTO
2010 (Santa Barbara, USA, August 15-
19, 2010). Lecture Notes in Computer Sci-
ence, vol. 6223, pp. 155–172. Springer,
Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 9

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
http://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/099
https://doi.org/10.1007/s10623-012-9720-4
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.1007/978-3-642-33460-3_10
https://doi.org/10.1007/978-3-642-33460-3_10
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9

	Introduction
	Related work
	Road-map


	Preliminaries
	Naive Bayes classifier
	The RLWE assumption
	Leveled fully homomorphic encryption
	Homomorphic evaluation
	Batching

	Adversarial model

	Building blocks
	Plaintext matrix-encrypted vector multiplication
	Naive encoding
	Packed encoding

	Argmax of an encrypted array
	Comparison
	Argmax


	Privacy-preserving naive Bayes classification
	Preparing the model
	Privacy-preserving Naive bayes Classifier

	Implementation and experiments
	Data set
	Parameter setting
	Accuracy
	Communication
	Timing

	Conclusion
	Acknowledgment
	Data availability
	Conflict of Interests




