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Abstract. Clustering is a crucial unsupervised learning method exten-
sively used in the field of data analysis. For analyzing big data, out-
sourced computation is an effective solution but privacy concerns arise 
when involving sensitive information. Fully homomorphic encryption 
(FHE) enables computations on encrypted data, making it ideal for such 
scenarios. However, existing privacy-preserving clustering based on FHE 
are often constrained by the high computational overhead incurred from 
FHE, typically requiring decryption and interactions after only one itera-
tion of the clustering algorithm. In this work, we propose a more efficient 
approach to evaluate the one-hot vector for the index of the minimum 
in an array with FHE, which fully exploits the parallelism of single-
instruction-multiple-data of FHE schemes. By combining this with FHE 
bootstrapping, we present a practical FHE-based k-means clustering pro-
tocol whose required round of interactions between the data owner and 
the server is optimal, i.e., accomplishing the entire clustering process on 
encrypted data in a single round. We implement this protocol using the 
CKKS FHE scheme. Experiments show that our protocol significantly 
outperforms the state-of-the-art FHE-based k-means clustering protocols 
on various public datasets and achieves comparable accuracy to plain-
text result. Additionally, We adapt our protocol to support mini-batch 
k-means for large-scale datasets and report its performance. 

Keywords: Clustering · k-means · Mini-batch k-means · 
Privacy-preserving computation · Fully homomorphic encryption · 
Outsourced computation 

1 Introduction 

Nowadays, computation power has become a commercial good. It is more and 
more common for one party who owns data to utilize the computation power 
of another party to analyze the data. In this two-party scenario, data privacy 
is of important concern. There are many solutions proposed to protect data 
privacy in this outsourced computation scenario, such as differential privacy, 
secure multi-party computation, and fully homomorphic encryption (FHE). The 
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idea of FHE is to allow one to operate on ciphertexts and get the expected 
result after decryption. This idea emerged and has been pursued a long time 
ago [26]. For example, the famous RSA public key encryption system supports 
homomorphic addition [27]. But a scheme can be called fully homomorphic only 
when it supports both addition and multiplication simultaneously and has no 
limit on the number of these two operations that can be consecutively done. It 
was not until 2009 that Gentry proposed the first FHE scheme [13]. Afterward, 
many FHE schemes have been proposed, such as BGV [ 5], BFV [ 4,11], CKKS 
[ 7], GSW [14], TFHE [ 9] and  FHEW  [10], and they are less complicated and 
much more efficient. 

Clustering is a crucial unsupervised machine learning method to analyze 
data, which can reveal intrinsic patterns and characteristics hidden in the data 
and is widely used in many fields. There are already some privacy-preserving k-
means clustering algorithms, such as [16,17,24,30,31], which are based on multi-
party computation. Here, we narrow our focus only on those based on FHE. 
Jäschke and Armknecht [15] proposed an algorithm based on the TFHE scheme, 
which supports logic operations AND, OR, NOT. So, they construct their algo-
rithm circuit with many logic gates, resulting in their algorithm requiring too 
much run time. Lu et al. [22] proposed a scheme named PEGASUS which sup-
ports switch between two different FHE schemes, CKKS and FHEW, and they 
accomplished only one iteration of k-means clustering algorithm using PEGA-
SUS. Recently, Zhang et al. [32] proposed a scheme based on CKKS, but did not 
utilize bootstrapping, so their scheme only supports a few times of iterations of 
k-means clustering. 

1.1 Results 

In this paper, we propose a protocol named COPPk-means (Protocol 6) for  Com-
pletely Outsourced Privacy-Preserving k-means based on FHE. It is accurate, 
efficient, and completely outsourced. 

– To test the effectiveness of our protocol, we compare the accuracy of our 
privacy-preserving protocol on ciphertexts with that of the original k-means 
clustering on plaintexts, and the result shows almost equivalent accuracy of 
them, with differences smaller than 3%. 

– To test the efficiency of our protocol, we compare the run time of our protocol 
with some other previous works. Compared with the work of Jäschke and 
Armknecht [15], which is completely outsourced but too costly, our work is 
56683× faster. Compared with the work of Lu et al. [22], which accomplishes 
only one iteration of k-means clustering, our work is up to 44.3× faster. 
Compared with the work of Zhang et al. [32], which will require decryption 
and re-encryption after only one or two iterations of k-means clustering, our 
work is about 2× to 3× faster than theirs under the same setup (i.e., without 
bootstrapping). 

– In particular, our protocol is based on the CKKS scheme and utilizes the 
bootstrapping of CKKS to enable a limitless number of iterations of k-means



78 C. Yang et al.

clustering. Hence, it requires only one round of interaction between the data 
owner and the computation server. We also report the performance (run time 
and memory consumed) of our COPPk-means protocol with bootstrapping 
on several popular datasets, which shows that our protocol performs well in 
both efficiency and memory consumption. 

Furthermore, for large-scale datasets, we present a mini-batch variant of our 
COPPk-means. And we report its performance on the MNIST dataset com-
pressed by PCA to extract 64 features from 784 features for all the 60000 samples 
in the training set. 

1.2 Techniques 

Comparison and ciphertext division are two unfriendly operations for CKKS. 
However, k-means clustering requires comparing distances and also requires divi-
sions to update centroids. 

In the “compare distances” step of k-means clustering, which is meant to 
allocate points to their nearest centroids by comparing their distances to cen-
troids, we use a polynomial to approximate the comparison function [ 8]. In the 
“update centroids” step, to avoid dividing by the ciphertext of the numbers of 
points that allocated to the same centroid, we adopt the stabilized variant of 
k-means (see, e.g., [15]), which let the centroids in the last iteration to play a 
role in the next iteration. In this way, dividing by a ciphertext (that encrypts 
the number of points allocated to each centroid) can be replaced by dividing by 
a plaintext (i.e., the whole number of points in the dataset). We also leverage 
the batching technique of CKKS, which enables multiple values to be encoded 
and encrypted in one ciphertext. 

Since the sign function is approximated by a polynomial, which requires 
multiple times of ciphertext addition and multiplication operations, we propose 
a parallel method (Sect. 3.4), against the usual serial method used in comparison 
operation on plaintexts, to find the minimum element in an array, and thus save 
plenty of levels needed to finish these addition and multiplication operations on 
ciphertexts. By integrating the parallel comparison method with the batching 
technique of the CKKS scheme, our protocol theoretically achieves high efficiency 
in terms of program run time. 

2 Background 

In this section, we introduce the basic concepts of k-means clustering and FHE 
that are necessary for the subsequent discussions. 

2.1 Original K-means Clustering Algorithm 

K-means is a classic and well-known clustering algorithm, which requires no 
prior knowledge about datasets and uses an iterative method to obtain the final 
clusters. It contains the following steps.
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1. Initialization: set the value of “k”, the number of clusters you want. Then 
choose k points randomly from the dataset, to be the initial centroids of the 
k clusters. 

2. Repeat the following steps, until the k centroids change little or reach the 
predetermined times of iterations. 

(a) Compute distances : compute distances between all points in the 
dataset and all the k centroids. Here, the distance could be l2-norm dis-
tance or other distance metrics. 
(b) Compare distances : allocate points in the dataset to its nearest cen-
troid. These points that are allocated to the same centroid form a cluster. 
So by the end of this step, we obtain k clusters. 
(c) Update centroids : recalculate k centroids of these k new clusters, then 
go back to Step (a). 

2.2 Fully Homomorphic Encryption 

As  mentioned in Sect.  1, there are many FHE schemes have been proposed since 
Gentry’s seminal work [13], such as BGV [ 5], BFV [ 4,11], CKKS [ 7], GSW 
[14], TFHE [ 9] and  FHEW  [10]. Among them, GSW, TFHE and FHEW can 
homomorphically evaluate AND, OR, NOT operations on 0, 1. While BGV and 
BFV can homomorphically evaluate addition and multiplication over integers, 
and CKKS can homomorphically evaluate addition and multiplication on real 
numbers or complex numbers. 

2.3 The CKKS Scheme 

In CKKS [ 7], the plaintext space is M = Z[x]/ XN +1  =:R while messages are 
complex vectors in C with = N/2, where N is a power-of-two integer. The 
ciphertext space of CKKS is C = R/qR, where  q is the ciphertext modulus, a  
large integer. The canonical embedding R[X ]/ XN + 1 C maps m(X) ∈ R 
into m ∈ C by evaluating m(X) at the primitive 2N -roots of unity ξj = ξ5j for 
0 ≤ . The inverse of the canonical embedding encodes a message m as a 
plaintext m(X). Thus, CKKS naturally support single-instruction-multiple-data 
(SIMD) operations, i.e., performing an operation on a ciphertext corresponds to 
performing the same operation on = N/2 entries  of  m in parallel. Each entry 
of the message m ∈ C is called a plaintext slot. 

For x = (xi)1≤i≤ and y = (yi)1≤i≤ , let  ct.x and ct.y be the ciphertext 
encrypted by CKKS under a same public key. Then CKKS supports the following 
basic operations: 

– Enc(x) encrypts x and returns the ciphertext. 
– Add(ct.x, ct.y) returns an encryption of x + y. The  Add operation can also 

accept multiple input parameters and return the sum of them. The input 
parameters can also be some messages from C , but there must be at least 
one ciphertext in these input parameters.
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– Sub(ct.x, ct.y) returns an encryption of x−y. One of the two input parameters 
can also be a message from C . 

– Mul(ct.x, ct.y) returns an encryption of x y, where is for Hadamard 
product, i.e., component-wise multiplication. 

– CMul(m, ct.x) returns an encryption of m x, where  m is a message 
C ; for  m ∈ C, CMul(m, ct.x) is a special case of CMul(m, ct.x) with 
m = (m, . . .  ,m). 

– Square(ct.x) returns an encryption of x x. 
– Avg(ct.x, n) =  Enc(a1, 0, a2, 0, . . .  , a , 0), where (ai)1≤i≤ is the average 

of (x1+(i−1)n, . . . , xn+(i−1)n). It should be ensured that n divides . 

The security of almost all existing FHE schemes, including CKKS, is based on 
the Learning With Errors (LWE) assumption [25] or its variants. In particular, 
CKKS is semantic secure under the Ring-LWE assumption [23]. For a detailed 
discussion on the security of CKKS, we refer to [21]. 

2.4 Bootstrapping of the CKKS Scheme 

When a ciphertext is newly encrypted, it is at a high level (the specific value 
depends on the setup parameters). As more operations have been done on the 
ciphertext, the lower the level the ciphertext is at. When the ciphertext is at 
the lowest level, no further operations can be done on it. To support further 
operations, the ciphertext must be refreshed to go back to a higher level. Such 
a process is called “bootstrap”, introduced by Gentry in [13]. In the literature, 
there exists a series of papers working on bootstrapping for the CKKS scheme, 
such as [ 3, 6,19,20]. 

– Bootstrap(ct.x) return a bootstrapped version of the ciphertext ct.x, which  
is refreshed back to the initial high level to support further operations. 

2.5 Comparison Function Approximated by Polynomial 

The CKKS scheme can readily support addition and multiplication, but com-
parison is an unfriendly operation for CKKS. There have already been some 
researches on polynomial approximation of comparison function in CKKS con-
text. Actually, comparison function is equivalent to sign function, since to com-
pare two values is equivalent to evaluate sign function on their difference. We 
adopt the approximation in [ 8], which proves a theoretically optimal way of poly-
nomial approximation of sign function in the interval [−1, 1] in CKKS context. 
And the general expression given in that paper is 

ft(x) =  
t 

i=0 

1 
4i 

· 2i 
i 

· x 1 − x2 i . (1) 

But a more accurate polynomial approximation requires more times of addi-
tion and multiplication, which means more levels to be consumed. There is a



Optimized Privacy-Preserving Clustering with FHE 81

trade-off between accuracy and numbers of levels consumed. And since the sign 
function is approximated by a polynomial, the output value of it will not be 
exactly −1 or 1 but a value in [−1, 1]. 

– Sign(ct.x) utilize addition and multiplication according to Eq. (1) on cipher-
text ct.x to accomplish an approximate evaluation of sign function on plain-
text x. All the elements in x must be between [−1, 1]. 

3 Building Blocks 

In this section, we introduce some building blocks that will be used in next 
section to construct our whole protocol. 

First, we fix some notations that will be used throughout this paper. Let 
be the number of slots in a plaintext. The dataset is denoted by a matrix 

P = (pi,j) ∈ Rd×n , where  d is the dimension of each sample and n is the 
number of samples, i.e. each column of P represents a sample. Let pi be the 
i-th row of P , and  P[i,j] be the submatrix consists of i-th to j-th rows of P . 
Let ct.x be an encryption of x, and let ct.P be an encryption of the matrix P , 
viewed as a vector row by row. And k is the number of centroids. In addition, 
Rm(x) =  (x, . . . ,  x) ∈ Rmd for x ∈ Rd . 

3.1 Encode and Encrypt 

For simplicity, we assume that d · n ≤ , which implies that the dataset matrix 
P can be encrypted into a single ciphertext. But note that our protocol actually 
also works for larger datasets (like MNIST used in Sect. 6), where d · . 

Algorithm 1 encrypts all data points in the dataset into one ciphertext, mini-
mizing the communication cost between the data owner and computation server. 

Algorithm 1. Encode and Encrypt 
Input: A matrix  P ∈ Rd×n with d · n ≤ . 
Output: ct.P which is  an encryption  of  P . 
1: Convert P ∈ Rd×n to a vector  p = (p1, . . . ,  pd) ∈ Rnd . 
2: ct.P ← Enc(p). 
3: return ct.P . 

3.2 Extract Points and Centroids 

Algorithm 2 is meant to extract the information of data points and centroids 
from the output ciphertext of Algorithm 1, and the output (ct.Pi)1≤i≤d and 
(ct.Ci)1≤i≤d of Algorithm 2 represent data points and centroids respectively.
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The arrangement of data points and centroids in ciphertexts of the algorithm 
2 is meant to better utilize the SIMD of the CKKS scheme, such that operations 
on each pair of ct.Pi and ct.Ci accomplish the calculation for the i-th dimension 
of all k centroids, no matter how large the k is. If ndk is smaller than the number 
of slots of one ciphertext, all these d ciphertexts representing data points can be 
combined into one ciphertext and all the d ciphertexts representing centroids also 
can be combined into one ciphertext, such that operations on the two ciphertexts 
accomplish the calculation for all d dimension of all k centroids, achieving a 
better utilization of SIMD of the CKKS scheme. 

Algorithm 2. Extract Points and Centroids 
Input: ct.P , k, d and n. 
Output: (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d, where  ct.Pi is an encryption of Rk(pi) ∈ Rkn 

and ct.Ci is an encryption of (Rn(pi,rj ))1≤j≤k ∈ Rkn . 
1: Generate k random numbers [r1, r2, . . . , rk], indicating which data points will be 

chosen as initial centroids. 
2: for 1 ≤ i ≤ d do 
3: Set ct.pi to be the ciphertext of pi extracted from ct.P and then repeat  ct.pi 

for k times to obtain ct.Pi. 
4: for 1 ≤ i ≤ d do 
5: for 1 ≤ j ≤ k do 
6: Extract a ciphertext ct.pi,rj from ct.P . 
7: Repeat ct.pi,rj for n times to obtain ct. ̃pi,rj . 
8: Concatenate these ct. ̃pi,rj ’s as one ciphertext ct.Ci. 
9: return (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d 

3.3 Compute Distances 

Algorithm 3 is meant to compute the square of distances between all data points 
and all centroids, which will be used as input of Algorithm 4 later. We note that 
the for-loop in Algorithm 3 can be executed in parallel for further acceleration. 

Algorithm 3. Compute Distances 
Input: d, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d where ct.Pi is an encryption of Rk(pi) ∈ Rkn 

and ct.Ci is an encryption of (Rn(pi,rj ))1≤j≤k ∈ Rkn . 
Output: ct.D which is  an encryption of  D = (di,j) ∈ Rk×n , and  di,j is the square of 

the Euclidean distance between the i-th centroid and the j-th data point. 
1: for i = 1, .  . . , d  do 
2: ct.ti ← Square(Sub(ct.Pi, ct.Ci)). 
3: ct.D ← Add((ct.ti)1≤i≤d). 
4: return ct.D
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3.4 Compare Distances 

Parallel One-to-One Comparison to Speedup. The most difficult part of 
k-means clustering algorithm realized with CKKS is that to allocate points in 
a dataset to its nearest centroid, because this step requires finding the smallest 
value in an array. As said above, the comparison operation is demanding in 
CKKS, which is approximated by a polynomial and needs many levels. If we 
practice the find-minimum operation in CKKS as the usual serial way does on 
plaintexts, the SIMD advantage of the CKKS scheme can not be utilized. And 
most frustrating is that if these comparison operations are done in series, a much 
more levels will be needed to support serial comparison operations. 

Can we utilize the SIMD advantage of the CKKS scheme and make sure 
a lower level is enough to accomplish the find-minimum operation in CKKS? 
The key is to avoid serial comparison operations. Consider that if the compari-
son results of every two elements in an array are known, then this information 
is enough to determine which is the largest or smallest element in this array. 
Though it may cost additional comparison operations to obtain the comparison 
results of every two elements, the point is that now the comparison operations 
can be done in parallel and the number of levels required is much less. And con-
siderable time can be saved by utilizing the SIMD feature of CKKS. We name 
such a method the parallel one-to-one comparison method. 

We remark that this parallel one-to-one comparison method can also be used 
in other FHE applications that need to find the biggest or smallest element in 
an array to save considerable time and levels. 

Below, in Table 1, we give an easy example of this parallel one-to-one com-
parison method. The final result in the rightmost column is a one-hot vector 
indicating the location of the minimum element. It can be calculated from the 
comparison results of every two elements, by multiplying every 0 or 1 in each 
row together, dismissing the asterisk. 

Table 1. An easy example illustrating parallel one-to-one comparison method 

8 7 9 6 result 
8 * 0 1 0 0 
7 1 * 1 0 0 
9 0 0 * 0 0 
6 1 1 1 * 1 

Compare Distance Algorithm. We adopt the parallel one-to-one comparison 
method into Algorithm 4 to save considerable run time and levels needed. 

Algorithm 4 packs all the distances that need to be compared into two cipher-
texts (Step 1), requiring only one time of the Sign evaluation on the subtracted 
difference of the two ciphertexts (Step 2 and 3), rather than evaluate Sign on
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every difference of these distances. Such pack method saves many times of addi-
tion and multiplication, since the sign function is approximated by a polynomial 
which is consisted of lots of addition and multiplication. After Sign evaluation, 
convert the result of sign function to the format of comparison result (Step 4 and 
5). At last, unpack the result to the matrix format and multiply them together 
(Step 6 to 8) to obtain the final output. 

Algorithm 4. Compare Distances 
Input: k and ct.D which is an encryption of D ∈ (0, 1)k×n . 
Output: ct.B which is an encryption  of  B ∈ (0, 1)k×n , and  the  i-th column of  B is 

an approximate one-hot vector indicating the index of the minimum in the 
i-th column of  D. 

1: Construct ciphertexts ct.D1 and ct.D2 that are encryptions of 
(Rk−1(d1), Rk−2(d2), .  . . ,  R1(dk−1)) and (D[2,k], D[3,k], . . . ,  D[k,k]), respectively, 
where di is the i-th row of D. 

2: ct.E ← Sub(ct.D1, ct.D2). 
3: ct.E ← Sign(ct.E). i,j ∈ (−1, 1). 
4: ct.F ← CMul(0.5 · 1, Add(ct.E , 1)). 
5: ct.F ← Sub(1, ct.F ). 
6: for i = 1, .  . . , k  − 1 do 
7: Concatenate (ct.fi+aj 

)1≤j≤i, where  aj = (j − 1)(k − 1) − j(j − 1)/2, and 
ct.F[1+(i−1)(k−1)−(i−1)(i−2)/2,i(k−1)−i(i−1)/2] as one ciphertext ct.Gi. 

8: ct.B ← Mul((ct.Gi)1≤i≤k−1). 
9: return ct.B 

The following example illustrates how Algorithm 4 works. Suppose now we 
have n = 4,  k = 3,  and  the  matrix  D as 

D = 

⎛ 

⎝ 
0.2 0.3 0.9 0.5 
0.1 0.4 0.7 0.6 
0.4 0.8 0.5 0.2 

⎞ 

⎠ 

We want to find the minimum in each column. Firstly, according to Step 1, 
we construct 

D1 = (R2(d1), R1(d2)) = (d1, d1, d2) 
= (0.2, 0.3, 0.9, 0.5, 0.2, 0.3, 0.9, 0.5, 0.1, 0.4, 0.7, 0.6) 

and 

D2 = (D[2,3], D[3,3]) = (d2, d3, d3) 
= (0.1, 0.4, 0.7, 0.6, 0.4, 0.8, 0.5, 0.2, 0.4, 0.8, 0.5, 0.2). 

Then after the execution of Step 2, we have E = D1 − D2: 

(0.1, −0.1, 0.2, −0.1, −0.2, −0.5, 0.4, 0.3, −0.3, −0.4, 0.2, 0.4).
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Then evaluating Sign function (Step 3) on E obtains 

E = Sign(E) =  (1, −1, 1, −1, −1, −1, 1, 1, −1, −1, 1, 1). 

Note that the actual values of E may not be exactly −1 or 1, because the sign 
function is approximated by a polynomial in CKKS. We use −1 and  1 here  for  
the purpose of an easy example. 

Now execute step 4 and 5 to obtain 

F = 0.5 1 (E + 1) =  (1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1) 

and 
F = 1 − F = (0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0). 

Then according to Step 6, we construct 

G1 = (f1, F[1,2]) =  (0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1) 

and 
G2 = (f2, f3, F[3,3]) =  (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1). 

Finally, according to Step 7, multiply G1 and G2 together in element-wise 
way, obtain 

B = G1 G2 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1) → 

⎛ 

⎝ 
0 1 0 0  
1 0 0 0  
0 0 1 1  

⎞ 

⎠ . 

We can write B in matrix format to check that the result is correct. Since in 
the first column of B, “1” is at the second location, so we check that the second 
location of the first column of D is “0.1”, and indeed “0.1” is the minimum value 
in the first column of D. Other columns can also be checked in this way. 

3.5 Update Centroids 

Stabilized K-means. Since ciphertext division is an unfriendly operation for 
the CKKS scheme, it is difficult to accomplish the “Update centroids” step in 
k-means clustering using CKKS. This step requires dividing the sum of values 
of the points in a cluster by the number of points in this cluster, which is in 
ciphertext state, to obtain the new centroid of this cluster. 

So to avoid the ciphertext division, we adopt the stabilized variant of k-means 
clustering [15]. Instead of dividing by the number of points in a cluster, which is 
in ciphertext state and may change in each iteration, we divide by the number 
of all points in the dataset, which is not encrypted and never change in every 
iteration. But now the problem is that we are dividing by something bigger. So 
to keep the result not too different from the original k-means, something else 
must be added to the numerator, i.e. sum of values of the points in a cluster, 
before division. Here, we choose the value of centroid in last iteration to add.
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And such way makes sense, since the centroid in the last iteration play a role 
like anchor, preventing the new centroid from changing too much. 

Suppose the number of points is n, number of centroids is k, and  newci 
represents the i-th centroid in current  iteration,  oldci represents the i-th centroid 
in last iteration, pj represents the j-th point, and bi,j indicates whether pj should 
be allocated to oldci, value being 1 if should and 0 if not. Below is the equation 
of the stabilized method to calculate new centroids. 

newci = 

⎛ 

⎝ 
n 

j=1 

(pj · bi,j + oldci · (1 − bi,j)) 

⎞ 

⎠ /n, i = 1, ..., k (2) 

Update Centroid Algorithm. Algorithm 5 adopts the stabilized method to 
update centroids to avoid ciphertext division in CKKS. 

Algorithm 5. Update Centroids 
Input: d, n, ct.B which has the same format as the output of Algorithm 4, (ct.Pi)1≤i≤d 

and (ct.Ci)1≤i≤d which are ciphertexts of data points and centroids respec-
tively. 

Output: (ct.Ci)1≤i≤d which are ciphertexts of updated centroids. 
1: for i = 1  to  d do 
2: Compute ct.Hi ← Add(Mul(ct.Pi, ct.B), Mul(ct.Ci, Sub(1, ct.B))). 
3: ct.ci ← Avg(ct.Hi, n). The decryption of ct.ci contains the information of the 

i-th dimension of all the k updated centroids. 
4: Extract the information of i-th (1 ≤ i ≤ d) dimension of all updated centroids from 

(ct.ci)1≤i≤d and combine them all into one ciphertext ct.c. 
5: ct.c ← Bootstrap(ct.c). 
6: Extract d ciphertexts (ct.ci)1≤i≤d from ct.c such that they are in the same format 

as ct.ci. 
7: Construct d ciphertexts (ct.Ci)1≤i≤d from (ct.ci)1≤i≤d such that they are in the 

same format as the output of Algorithm 2. 
8: return (ct.Ci)1≤i≤d. 

Algorithm 5 actually has already obtained the information of updated cen-
troids when the for-loop (Step 1 to 3) ends. Step 4–6 are meant to combine the 
information of all centroids into one ciphertext, so to save the times of boot-
strapping needed. Step 7 recovers the format of centroids back to the same as 
the output of Algorithm 2 to continue the next iteration. We note that the 
bootstrapping operation can be omitted in Step 5 and be operated in follow-
ing iterations where the levels are used up. But when bootstrapping is operated 
somewhere else, there could be multiple ciphertexts need to be bootstrapped, 
consuming much more run time.
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4 Our COPPk-means Protocol 

Protocol 6 presents our Completely Outsourced Privacy-Preserving k-means 
clustering protocol, which is constructed by the building blocks in Sect. 3 and 
consists of two parties, data owner and computation server. 

Protocol 6. Completely Outsourced Privacy-Preserving k-means 
Input of Data Owner: sk (secret key), ek (evaluation key), k (number of centroids), 

d (dimension), n (number of data points), T (times of iteration) and the dataset 
P . 

Data Owner: 
1: Calling Algorithm 1 with dataset P as its input returns ct.P . 
2: Send ek, k, d, n, T and ct.P to the computation server. 
Computation Server: 
3: Initialization: Calling Algorithm 2 with k, d, n and ct.P as its input returns 2d 

ciphertexts, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d. 
4: Repeat T times: 
5: Compute distances: Calling Algorithm 3 with d, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d 

as its input returns ct.D. 
6: Compare distances: Calling Algorithm 4 with k and ct.D as its input returns 

ct.B. 
7: Update centroids: Calling Algorithm 5 with d, n, ct.B, (ct.Pi)1≤i≤d and 

(ct.Ci)1≤i≤d as its input returns (ct.Ci)1≤i≤d. 
8: Send ct.B to the data owner. 
Data Owner: 
9: Data owner decrypts: Decrypt ct.B with sk to obtain the matrix B with size 

of k × n. For i-th (1 ≤ i ≤ n) column of  B, find the location of the largest value 
in this column to determine which centroid the i-th data point should be allocated 
to. 

Remark 1. The dataset P owned by the data owner must satisfy that the square 
of the longest distance between two points in the dataset does not exceed 1, oth-
erwise the data owner should first scale the dataset to satisfy this requirement 
before encrypting it, since Algorithm 4 in step 6 requires that plaintext of its 
input ciphertext must be in [0, 1]. 

Firstly, Data owner generates secret key sk and evaluation key ek, and owns 
the dataset P with size of number of points n × dimension d. Before encrypt-
ing P , data owner has to operate the scale preprocess on P ,  so as  to make  
the following computation steps on the server side can be operated successfully. 
The reason for the scale preprocess is explained in Remark 1. Then, data owner 
encrypts the preprocessed dataset P and sends the ciphertext of it to the com-
putation server. Besides the ciphertext of P and evaluation key ek, data  owner  
has also to send some necessary parameters, including dimension d, number  of  
points n, number of centroids k, and the times of iterations T to be operated.
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After receiving the ciphertext of dataset P , evaluation key ek, and param-
eters (n, k, d, T ), computation server randomly chooses k data points as initial 
centroids and then perform T iterations of k-means clustering. After T itera-
tions, the computation server sends the result, which is a ciphertext of a boolean 
matrix B with size of k × n indicating which centroids these points should be 
allocated to, back to the data owner. 

Then data owner decrypts B and do some simple calculations to obtain the 
final result. Each column of B contains the information that which centroid 
a point should be allocated to. For example, when k is 4, one column with k 
elements could be (0.01, 0.84, 0.02, 0.10), and the point should be allocated to 
the second centroid because 0.84 is the maximum in this column. 

4.1 Analysis of Our Protocol 

Correctness. Correctness is guaranteed since the operations on ciphertexts 
strictly follow that of stabilized k-means in plain. And the noise introduced by 
the CKKS scheme has little effect on the final result, which will be checked by 
an accuracy test in Sect. 5. 

Computational Complexity. Since the bootstrapping operation is relatively 
much more time-consuming compared to other operations, and the primary fac-
tor determining the required number of bootstrapping is the levels (multiplica-
tion depths) consumed during the computation, so we here focus solely on the 
number of levels consumed. 

In the “Initialization” (Step 3), one level is consumed to extract data points 
and centroids. In the “Compute distances” (Step 5), only one ciphertext mul-
tiplication is required, consuming one level. In the “Compare distances” (Step 
6), the Step 1 of Algorithm 4 consumes one level, the Step 3 of Algorithm 4 
consumes log2(p) levels where p is the degree of the approximate polynomial 
of the sign function, and Step 4–8 of Algorithm 4 consumes 2 + log2(k) levels 
where k is the number of centroids. And in the “Update centroids” (Step 7), 3 
levels are consumed. 

Totally, each iteration (Step 5–7 of Protocol 6) consumes  7  +  log2(p) + 
log2(k) levels, where p is the degree of the approximate polynomial of the sign 
function and k is the number of centroids. 

Communication Complexity. From the description of Protocol 6, it  is  clear  
that the entire protocol involves only one round of interaction. Specifically, at 
the beginning, the data owner sends the encrypted dataset to the computation 
server, and at the end, the computation server sends the ciphertext results back 
to the data owner. Therefore, it is optimal in terms of the number of communica-
tion rounds. Additionally, the amount of ciphertext data sent by the data owner 
includes at most ciphertexts, while the encrypted results contain at most 

ciphertexts. In particular, when max(nd, nk) ≤ , the communication 
overhead is just two ciphertexts.
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Security. Here we only consider the security of Protocol 6 in the semi-honest 
adversarial model. The data owner encrypts the dataset and then sends this 
ciphertext and evaluation key ek and some parameters (n, k, d, T ). It is apparent 
that T has no relevance to the dataset. The parameters n, k, and  d can be con-
sidered as public information, because even in the ideal model, such information 
is also required to complete the clustering computation. All the computations 
done on the computation server side are on ciphertexts encrypted by CKKS. 
Therefore, the security follows from the semantic security of the CKKS scheme. 

5 Implementation and Experiments 

We implemented Protocol 6 with Lattigo v5 [ 1], and our implementation is avail-
able at https://github.com/JohnJimAir/COPPk-means.  The  machine we use  to  
test our implementation is equipped with Intel Xeon Gold 6248R (3.00GHz, 
24Core) and 128G (32G×4) memory. The parameters we use are the default 
parameters for demonstrating bootstrapping in Lattigo v5 [ 1], with ring degree 
N = 216 and log q ≈ 638, which achieves a 128 security according to the latest 
lattice estimator [ 2]. 

In our implementation, the specific values of t in the approximate polynomial 
(Eq. (1)) for the sign function are 3, 7, 15, i.e., Sign ≈ f15(f15(f7(f3(X)))) which 
consumes  3 + 4 + 5 + 5  =  17  levels.  

5.1 Clustering Accuracy 

We run k-means clustering for T = 5 iterations on G2 dataset [12], and T = 10  
iterations on FCPS dataset [29]. The size of datasets and the average accuracy of 
clustering result is presented in Table 2, the fifth column for the original k-means 
algorithm on plaintexts, and the sixth column for our COPPk-means algorithm 
on ciphertexts. From the result, we can see that there is little accuracy loss of 
our protocol on ciphertexts compared to the original k-means on plaintexts. 

Table 2. Test Accuracy 

Dataset n d k The original Ours Difference 
G2-1-20 2048 1 2 99.4% 99.3% −0.1% 
G2-2-20 2048 2 2 100.0% 100.0% 0.0% 
G2-4-20 2048 4 2 100.0% 100.0% 0.0% 
G2-8-20 2048 8 2 100.0% 100.0% 0.0% 
G2-16-20 2048 16 2 100.0% 100.0% 0.0% 
Chainlink 1000 3 2 65.3% 65.4% +0.1% 
EngyTime 4096 2 2 95.1% 94.8% −0.3% 
Hepta 212 3 7 80.2% 80.2% 0.0% 
Lsun 400 2 3 71.0% 71.2% +0.2% 
Tetra 400 3 4 100.0% 96.8% −3.2% 
TwoDiamonds 800 2 2 100.0% 100.0% 0.0% 
WingNut 1016 2 2 96.3% 95.3% −1.0%

https://github.com/JohnJimAir/COPPk-means
https://github.com/JohnJimAir/COPPk-means
https://github.com/JohnJimAir/COPPk-means
https://github.com/JohnJimAir/COPPk-means
https://github.com/JohnJimAir/COPPk-means
https://github.com/JohnJimAir/COPPk-means
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5.2 Comparison with Lu et al. [22] 

Table 3 shows the time cost of one iteration for datasets whose values are sampled 
from [−1, 1] uniformly at random with 256, 1024, 4096 points and dimension of 
16. We run our implementation of Protocol 6 with 20 threads, as in Lu et al. 
[22]. From the result, our protocol is 1.5× to 44.3× faster than Lu et al., and the 
larger the dataset, the faster our protocol compared with the work of them. This 
is because for the datasets used here, nk does not exceed the number of slots in 
one ciphertext in our implementation (number of slots = 32768, determined by 
the setup parameters). So whether n is 256, 1024 or 4096, it makes no difference 
in terms of run time in our implementation. 

Table 3. Compare with Lu et al. 

n k Lu et al. [22] (min)  Ours (min) Speedup 
256 2 1.35 0.89 1.5× 

4 2.33 0.93 2.5× 
8 4.09 1.16 3.5× 

1024 2 3.66 0.89 4.1× 
4 7.57 0.90 8.4× 
8 15.34 1.20 13.2× 

4096 2 13.95 0.90 15.4× 
4 26.61 0.90 29.5× 
8 52.04 1.19 44.3× 

5.3 Comparison with Jäschke et al. [15] and  Zhang  et  al.  [32] 

Since Jäschke et al. [15] and Zhang et al. [32] reported their  run time  on the  
Lsun dataset with a single thread, here we also test our protocol on the same 
dataset with a single thread. The work of Jäschke et al. has two versions, exact 
and approximate. The approximate version is derived from the exact version by 
dismissing some bits of information encrypted by the TFHE scheme. The result 
in Table 4 shows that our protocol is 55683× faster than the exact version of 
Jäschke et al., 1004× faster than the approximate version of Jäschke et al., and 
3× faster than Zhang et al.. 

Since the work of Jäschke et al. is based on the TFHE scheme which operates 
on logic gates, while ours is based on the CKKS scheme which operates directly 
on real numbers, the speedup we achieved is an expected result from theory. 
And the speedup we achieved compared with the work of Zhang et al., which is 
also based on the CKKS scheme, could result from the different way adopted to 
deal with the ciphertext division operation in “Update centroids” step. Zhang 
et al. adopted polynomial to approximate the division operation, which requires
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multiple times of addition and multiplication on ciphertexts, while we adopt the 
stabilized method to avoid the division operation, which requires only one time 
of ciphertext multiplication. 

Table 4. Compare with Jäschke et al. and Zhang et al. 

Work Version Threads Time (T = 10) 
Jäschke et al. [15] exact one 363.90 days 
Jäschke et al. [15] approximate one 154.70 h 
Zhang et al. [32] − one 1606.36 s 
This work Protocol 6 one 554.68 s 

Now we compare our protocol with Zhang et al.’s [32] further. For  fairness,  
we use the same parameters as Zhang et al., and the run time is presented in 
Table 5. From the results, our protocol is about 2× to 3× faster than Zhang 
et al.. And note that theirs is not a completely outsourced scheme, requiring 
decryption and re-encryption after only one or two iterations. 

Table 5. Compare with Zhang et al. (T = 5  for  G2  and  T = 10  for  FCPS)  

Dataset Zhang et al. (s) Ours (s) Speedup 
G2-1-20 222.41 111.36 2.0× 
G2-2-20 221.11 114.35 1.9× 
G2-4-20 250.20 117.96 2.1× 
G2-8-20 311.55 124.19 2.5× 
G2-16-20 441.89 139.22 3.2× 
Chainlink 421.09 231.19 1.8× 
EngyTime 394.87 227.50 1.7× 
Hepta 1213.90 488.78 2.5× 
Lsun 442.65 237.18 1.9× 
Tetra 620.42 273.55 2.7× 
TwoDiamonds 397.73 228.06 1.7× 
WingNut 395.45 227.45 1.7× 

5.4 Performance of COPPk-Means 

In Table 6, we report the performance of Protocol 6 on all datasets mentioned 
earlier. It should be noted that the run time and memory consumed listed here 
are recorded by executing Protocol 6 faithfully, i.e. accomplish T iterations of
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k-means with just one single round of interaction between the data owner and 
the computation server (without decryption and re-encryption). To our best 
knowledge, this is the first practical experimental result on the efficiency of a 
completely outsourced privacy-preserving k-means clustering protocol via FHE. 

Table 6. Performance of COPPk-means (T = 5  for  G2  and  T = 10  for  FCPS)  

Dataset Run Time (min) Memory (GB) 
G2-1-20 7.42 27.86 
G2-2-20 7.54 29.16 
G2-4-20 7.57 31.17 
G2-8-20 7.67 31.80 
G2-16-20 8.12 37.79 
Chainlink 14.68 31.77 
EngyTime 14.20 30.35 
Hepta 16.16 36.46 
Lsun 14.38 31.33 
Tetra 14.54 32.13 
TwoDiamonds 14.40 30.49 
WingNut 14.77 31.71 

6 Mini-batch K-means 

For large-scale dataset clustering, mini batch k-means [28] is  a  significant  
method, and its algorithm on plaintexts is presented in Algorithm 7. 

Algorithm 7. Mini-batch k-means on plaintexts 
Input: s (size of batch, i.e. number of points in one batch), k (number of centroids), 

dataset P . 
Output: (ci)1≤i≤k (updated centroids). 
1: According s, split the dataset P into some small batches, suppose obtain q batches. 
2: Randomly choose k points from first batch as initial centroids, denoted as (ci)1≤i≤k. 
3: for i = 1, .  . . , q  do 
4: Allocate data points in i-th batch to its nearest centroid among (ci)1≤i≤k, to  

obtain k clusters. 
5: Update (ci)1≤i≤k as the centroids of the k clusters just obtained. 
6: return the updated k centroids (ci)1≤i≤k.
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Protocol 6 can be readily adapted to support the mini-batch k-means. And 
to avoid ciphertext division, we still employ the stabilized variant, resulting in 
an encrypted version of the stabilized mini-batch k-means protocol. We omit the 
detailed description of this encrypted version here, we just call it Protocol 8 
for convenience. 

We also implemented this Protocol 8 on Lattigo v5. To test the performance 
of Protocol 8 on large-scale datasets, we use PCA (principal component analysis) 
to extract 64 features from 784 features for all the 60000 samples in the training 
dataset of MNIST [18]. And then these 60000 samples are divided into 19 batches, 
each batch containing 3158 samples (the last batch contains 2 more samples 
selected randomly from the whole 60000 samples, to maintain the organization 
coherence of data information in ciphertexts). The experiment results in Table 7 
demonstrate that Protocol 8 is capable of dealing with datasets of large scale. 

Table 7. Performance of Protocol 8 

Dataset size Batch size Total time Time per batch Memory 
64 × 60000 64 × 3158 80.42 min 4.23 min 78.17 GB 

7 Conclusion  

In this paper, we present a protocol that achieves a completely outsourced 
privacy-preserving k-means clustering based on the CKKS FHE scheme. Our 
protocol only needs one round of interaction between the data owner and the 
computation server. It can accomplish limitless times of iteration of k-means 
clustering on the computation server side. We also give the mini-batch variant 
of our protocol, which is capable of dealing with large-scale datasets. Experi-
ments based on our proof-of-concept implementation show that our protocols 
perform well in practice. 
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encrypted data. In: Pöpper, C., Batina, L. (eds.) ACNS 2024, LNCS, vol. 14583, 
pp. 213–236. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-54770-6 9

https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9
https://doi.org/10.1007/978-3-031-54770-6_9



