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Abstract. To address the privacy requirements of sensitive medical data, we 
present a multicenter diagnostic inference framework based on homomorphic 
encryption (HE). Leveraging the CKKS scheme implemented in the Lattigo library 
with 128-bit security, our method enables efficient and privacy-preserving infer-
ence for diseases such as bladder cancer, breast cancer, and sepsis. By exploiting 
the sparsity of LASSO parameters, we significantly reduce the computational 
overhead of encrypted inference. Notably, our LASSO-based analysis reveals a 
potential therapeutic target for bladder cancer. Experimental results across multi-
ple datasets show that encrypted inference achieves performance comparable to 
plaintext inference, demonstrating that strong privacy can be preserved without 
sacrificing diagnostic performance. 

Keywords: Disease Diagnosis · Homomorphic Encryption · Medical AI 
Models · Secure Inference 

1 Introduction 

Recent advances in artificial intelligence (AI) have revolutionized disease diagnosis by 
improving accuracy and efficiency. AI models, applied in areas like cancer detection 
[1] and genomic analysis [2], ease physician workloads and provide faster, more accu-
rate diagnoses, shifting from expert-driven to data-driven systems. However, privacy 
and security concerns hinder AI’s widespread use in medical diagnostics. Medical data, 
often distributed across institutions, contains sensitive patient information, making it 
difficult to share and collaborate. Secure multicenter medical model inference enables 
AI model owner to provide services across multicenter without compromising privacy. 
Implementing this approach is challenging due to the need for protocols that ensure data 
confidentiality and interoperability. Privacy-preserving techniques like secure multi-
party computation (MPC) [3], differential privacy [4], homomorphic encryption (HE)
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[5], and trusted execution environments [6] enable us to do so. HE, which allows com-
putations on encrypted data, mitigates exposure risks. In HE- based frameworks, data 
remains encrypted throughout, reducing unauthorized access concerns. This makes HE 
suitable for cloud environments and multicenter medical model inference. Moreover, 
HE schemes like BGV [7], BFV [8, 9], FHEW [10], TFHE [11], and CKKS [12] are  
quantum-resistant, offering long-term security. 

Fig. 1. HE-based multicenter medical model inference. In traditional solutions (below), there is 
a risk of data leakage from both the clinical data of medical centers and the model data of service 
providers. In our framework (above), the clinical data from each medical center is independently 
encrypted using its own HE public key. The service provider then performs encrypted inference 
based on HE and returns the encrypted results to the corresponding medical center. The medical 
center decrypts the results using its own HE private key to obtain the final diagnostic prediction. 
Throughout this process, the clinical data of each medical center remains encrypted, and the 
service provider’s model never leaves the domain. This ensures data security for all parties while 
completing the model inference. 

In this paper, we propose a multicenter medical model inference framework for dis-
eases diagnosis based on HE, as shown in Fig. 1. In this framework, we implement effi-
cient, accurate, and secure model inference for various diseases (bladder cancer, breast 
cancer, sepsis) across different datasets (see Sect. 3.1) using both polynomial disease



Secure Multicenter Medical Model Inference 137

prediction models (LASSO, least absolute shrinkage and selection operator [13], poly-
nomial dendritic neural (PDN) [14]) and non-polynomial ones (MLP [15], KAN [16]). 
In particular, for the LASSO-based prediction model for bladder cancer, we enhance 
the efficiency of model inference on encrypted data by leveraging the sparsity of model 
parameters, thus enabling efficient predictions for medical forecasting. Furthermore, 
based on the corresponding dataset, our experiments identify a potential new therapeu-
tic target for bladder cancer, which could contribute to clinical diagnosis and treatment; 
see Sect. 5 for more details. 

We implemented the above ciphertext inference using the CKKS scheme [12] from  
the HE library Lattigo [17]. Experimental results show that, under setups for 128-bit 
security, our proposed framework efficiently completes all encrypted inference tasks, 
whether using polynomial or non-polynomial models. Furthermore, the performance 
metrics (such as accuracy, precision, recall, F1 score, and AUC) are almost identical to 
those of plaintext model inference; see Sect. 4. 

2 Related Work 

Generally, plenty of AI models for inference over encrypted data have been investigated 
based on HE schemes, including decision tree [18], naive Bayes [19], k-means [20], 
CNN [21], etc. Some of them are hybrid, i.e., combining HE with some other techniques, 
which typically needs interactions between participants with communication overhead. 
The datasets used to validate privacy-preserving AI inference are typically the most 
commonly used ones, such as MNIST [22], CIFAR [23], etc. 

For healthcare or medical applications, privacy-preserving machine learning (PPML) 
is a highly active research field; we refer readers to recent surveys [24, 25] and references 
therein for more details. Here, we focus specifically on privacy-preserving inference 
based on HE for medical datasets. Vizitiu et al. [26] explored the application of privacy-
preserving technologies in medical images, proposing the use of federated learning, 
HE, and MPC to protect sensitive patient data. Yue et al. [27] introduced a hybrid deep 
learning framework combining HE and differential privacy, aiming to conduct privacy-
preserving analyses of time-series medical images. T’Jonck et al. [28] proposed a frame-
work for medical data classification using HE, allowing machine learning inference on 
encrypted data while maintaining data encryption throughout the classification process, 
ensuring patient privacy. Sarkar et al. [29] investigated how HE can be employed to pre-
dict cancer types using encrypted genomic data. These studies collectively demonstrate 
the potential and security of HE in medical data analysis. 

3 Methods 

3.1 Datasets 

Bladder Cancer Dataset. The dataset called “bc total” is collected from The Cancer 
Genome Atlas (TCGA) [30] and the Gene Expression Omnibus (GEO) [31] database, 
aiming at identifying the bladder cancer (BCa)-specific DNA methylation markers. This 
dataset includes 1, 069 cases, and each has 385, 456 markers. After removing NAN sites 
and T-test, 342, 669 markers remain.
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Breast Cancer Dataset. The well-known Wisconsin Breast Cancer (WBC) data 
set in UCI Machine Learning Repository [32]. Features are computed from a digitized 
image of a fine needle aspirate (FNA) of a breast mass. They describe the characteristics 
of the cell nuclei present in the image. Each sample has 9 attributes. Class distribution: 
458 benign, 241 malignant. 

Sepsis Dataset. The sepsis experimental dataset is sourced from multiple tier-one 
hospitals. There are a total of 689 cases, with 227 positive cases and 462 negative cases. 
Among the positive patients, there are 175 cases from the Southwest Hospital, 28 cases 
from West China Hospital, and 24 cases from Xuanwu Hospital. Among the negative 
patients, there are 378 cases from the Southwest Hospital and 84 cases from West China 
Hospital. Each patient is with 36 attributes. 

3.2 Plaintext AI Models 

Artificial intelligence models are capable of handling tasks such as classification and 
regression. In this paper, we focus solely on the former. Assume that after model training, 
a classification AI model f is obtained. For a given input instance x, the model outputs a 
predicted label y = f (x). Different AI model architectures will result in different models 
f . 

We will use different AI models to deal with the three datasets introduced above, 
including Least Absolute Shrinkage and Selection Operator (LASSO) [13], MultiLayer 
Perceptron (MLP) [15], exponential and asymptotic polynomial dendritic neural (EPDN 
and APDN) [14], and Kolmogorov-Arnold Networks (KAN) [16]. 

Bladder Cancer. Recall that the objective of LASSO is to solve 

min 
β 

||y − Xβ||2 2 
N

+ α||β|| (1) 

where X is the covariate matrix, N is the number of samples, and y is the label. Here, α is 
a hyperparameter that determines the degree of regularization. Using the LASSO method 
on the public dataset, training was conducted with different values of α in (1), resulting 
in different linear models with the same form f (x) = 〈w, x〉 +  b, where x ∈ R342,669 is 
the input sample and w is the model parameter that is sparse. 

Breast Cancer and Sepsis. For the bladder cancer dataset, LASSO outperformed 
models such as decision trees, random forests, and MLP, and thus, no further consider-
ation will be given to this dataset. In this section, we primarily focus on using various 
AI models for diagnostic classification on the breast cancer and sepsis datasets. 

Model Structure and Model Training. The structure of each network is described 
as in Table 1. Each model and dataset is trained for 100 epochs with a batch size of 
32, using a learning rate of 0.001. The models are optimized using the Adam optimizer 
based on the backpropagation algorithm. The training: validation: test ratio for each 
dataset is 6:2:2. A 5-fold cross-validation was performed respectively. We record all 
model parameters for encrypted inference. 

3.3 A Unified Protocol 

Homomorphic Encryption. Homomorphic encryption (HE) enables computation on 
ciphertexts, producing correct results upon decryption—a concept dating back decades
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Table 1. Description of Network Structures for Each Model. 

Network Network Structure Structure Description 

Selu 2-6-4-2 Input dimension is 2, with 6 hidden layers and 4 
nodes, output dimension is 2, each layer is based 
on the Selu activation function 

APDN 2-6-4-2 Input dimension is 2, with hidden layers of 6 and 
4 nodes, output dimension is 2, each layer utilizes 
a multiform quadratic function (w·x + b)·(w′

·x + 
b

′
) 

EPDN 2-6-4-2 Input dimension is 2, with hidden layers of 6 and 
4 nodes, output dimension is 2, each layer utilizes 
a multiform quadratic function (w·x + b)·(w′

·x + 
b

′
) 

KAN forbreast cancer 9-36-4-2 Input dimension is 9, with hidden layers of 36 and 
4 nodes, output dimension is 2, each layer utilizes 
some activation functions, such as sin, tanh, abs, 
etc 

KAN for sepsis 37-1 Input dimension is 37, output dimension 1, each 
layer utilizes activation functions, including sin, 
tanh, abs, etc  

[33]. Gentry’s 2009 breakthrough [5] led to practical FHE schemes such as BGV [7], 
BFV [8, 9], CKKS [12], GSW [34], TFHE [11], and FHEW [10]. Among them, GSW, 
TFHE, and FHEW support binary logic operations, BGV and BFV support integer 
arithmetic, and CKKS supports real or complex number operations. FHE schemes are 
typically IND-CPA secure, with security grounded in LWE [35], RLWE [36], or their 
variants. In practice, minimizing multiplicative depth is crucial, as deeper circuits incur 
higher computational costs. 

Fig. 2. The workflow of secure medical AI model inference.
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The Protocol. Following the workflow in Fig. 2 and the framework in Fig. 1, the  
medical center first sends the encrypted clinical data to the service provider for a diag-
nosis. The service provider runs the classifier with its plaintext model together with the 
received encrypted clinical data as input, and results in an encrypted diagnosis result, and 
sends it to the corresponding medical center. The medical center decrypts the received 
ciphertext to disclose the result of the diagnosis. This describes the following general 
protocol for an arbitrary model f . We will discuss the details in Sect. 3.4 for different 
AI models f . 

Adversarial model. Within the framework in Fig. 2, the protocol only involves the 
client and the server, respectively. We consider the honest-but-curious (semi-honest or 
passive) model as described in, e.g., [37, Sec. 7.2]. 

Security. By employing the classical simulation-based proof method in secure mul-
tiparty computation, the security of our protocol can be reduced to the security of the 
HE scheme, since the protocol only requires a single round of communication. 

3.4 Encrypted Inference 

We discuss the encrypted AI model inference by categorizing the models into polynomial 
(LASSO and PDNN) and non-polynomial models (MLP and KAN). 

Polynomial Models. For inference using a linear model, f (x) = 〈w, x〉+  b, where w 
is the coefficient vector and b the bias term, the inference essentially involves computing 
an inner product between the vector w (in plaintext form) and the vector x (in encrypted 
form). While this is a relatively simple computational task, the presence of the L1 reg-
ularization term in the LASSO model results in w being a highly sparse vector. This 
sparsity improves model interpretability and enhances computational efficiency. Fortu-
nately, under the framework illustrated in Fig. 2, this sparsity can be fully leveraged. 
Specifically, assuming the dimension d of the vector x is extremely large, exceeding 
the maximum dimension � that a single ciphertext can represent, the vector x needs to 
be encrypted as n = � d

�
� ciphertexts. Correspondingly, the vector w must be divided



Secure Multicenter Medical Model Inference 141

into n segments as well. Given that w is sparse, let us assume only n1 � n segments 
are non-zero. In this case, we only need to compute n1 plaintext-ciphertext inner prod-
ucts of dimension � instead of n. For polynomial models with degrees larger than one, 
such as PDNN, f (x) is essentially a polynomial function. To homomorphically evaluate 
a polynomial of degree d by using O(d) non-scalar multiplications, one can use the 
Paterson-Stockmeyer algorithm [38]. It costs � log d� multiplicative depth. 

Non-polynomial Models. We observe that the primary difference between non-
polynomial models and polynomial models is that the former incorporates non-
polynomial functions into the model to enhance its expressive capability. In MLP, a 
non-polynomial activation function, such as Sigmoid or Selu, is applied between dif-
ferent layers. KAN takes this further by performing a non-polynomial transformation 
at each node, subsequently combining these results to construct a more complex func-
tional structure. The main challenge in applying encrypted inference with these models 
lies in how to evaluate these non-polynomial functions homomorphically on encrypted 
data. HE schemes only support addition and multiplication on ciphertexts. Thus, non-
polynomial functions should be approximated by polynomials, which consists of only 
additions and multiplications, to make it compatible with HE schemes. And we use 
Chebyshev polynomials to approximate those non-polynomial functions. Compared with 
Taylor approximation, Chebyshev approximation is more accurate and numerically sta-
ble. Furthermore, the Paterson-Stockmeyer algorithm can also be applied to Chebyshev 
approximation; see, e.g., [39]. 

4 Results 

4.1 Plainxtext Model Inference 

LASSO for BCa. Here, we only describe the results of LASSO method for the bladder 
cancer datasets. Other models for other datasets are stored and used to test the perfor-
mance of our secure model inference protocol. Recall the hyperparameter α in (1). For 
α = 0.1, 0.02, 0.01, we obtain three different models with w has 1, 5, and 9 non-zero 
entries, respectively, which correspond to different markers that may be related to BCa. 

– α = 0.1 

• Model: w = (0.553), b = 0.200180702. 
• Marker: cg26112797. 

– α = 0.02 

• Model: w = (0.164, 0.0989, 0.374,0.0235, 0.475), and b = 0.013430789. 
• Markers: cg26112797, cg06153925, cg10351284, cg10590292, cg23359665. 

– α = 0.05 

• Model: w = (0.0319, 0.225, 0.00128, 0.251, 0.38, 0.0673, 0.0801, 0.0261, 0.192), 
and b = 0.006486069.
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• Markers: cg26112797, cg06153925, cg10351284, cg10590292, cg23359665, 
cg00025044, cg06390079, cg11436362, cg24757533. 

In the training of the plaintext model, the “bc total” dataset was split into a 7:3 ratio 
for training and test. During model training, we employed 10-fold cross-validation. On 
the test dataset, AUC equals 1.0 for all three models. 

KAN for Sepsis. Although the KAN model performs a bit worse than EPDN, APDN 
and Selu on the breast cancer dataset, it outperforms EPDN and APDN on the sepsis 
dataset; See Fig. 3 and 4. 

4.2 Secure Model Inference 

In this section, we will present the performance of the HE version of our model. The 
clinical data is encrypted and sent to the classifier, who owns the model, to compute the 
result in encrypted state. Then, the encrypted result is sent back and decrypted by the 
medical center; see Fig. 1. In this way, the clinical data is protected from the classifier 
since the data is encrypted, and the model owned by the service provider is also protected 
from the medical center since the medical center can only access the final result. So, the 
data leakage and model leakage are both eliminated. 

Setup. The library we use is Lattigo (v5.0.2) [17], and the HE scheme we choose is 
CKKS [12]. Table 2 describes the parameters, ciphertext modulus log q and degree of 
ring N for RLWE, that we used in experiments. The column entitled “depth” indicates 
the multiplicative depth required by evaluating the corresponding model inference. The 
depth required by these models is supported by the setup parameters without needing 
bootstrapping. Under this setup, we can achieve a 128-bit security according to a draft 
security standard [40] and the latest lattice estimator [41]. The code for secure model 
inference, together with all model parameters, are available at https://github.com/JohnJi 
mAir/SecureMulticenterMedicalModel_viaHE. 

Table 2. Parameter setup for encrypted model inference. 

Model depth logq N 

LASSO 2 160 213 

EPDN/APDN 6 386 214 

Selu 13 721 215 

KAN for Sepsis 17 881 215 

KAN for Breast Cancer 24 1356 216 

Performance. As mentioned previously, under the framework of Protocol 1, we 
lever-age the sparsity of the model to perform encrypted inference on bladder cancer 
data using the LASSO linear model. This approach enables the classification of gene data 
of dimension 342, 669 within one second, with the intermediate and resulting ciphertexts 
not exceeding 20 MB. For the two polynomial models, EPDN and APDN, since they

https://github.com/JohnJimAir/SecureMulticenterMedicalModel_viaHE
https://github.com/JohnJimAir/SecureMulticenterMedicalModel_viaHE
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are constructed through polynomials, which is very friendly for HE schemes, the result 
from HE is the same as in plaintexts. While the Selu model consists of exp(x), we use 
polynomials to approximate it in the intervals observed from the process of plaintexts. 
The interval is [4], and the degree of the approximate polynomial is 15. Although the 
polynomial approximation of exp(x) introduces numerical errors, the difference in final 
result accuracy between ciphertexts and plaintexts on the breast cancer dataset is less 
than 2%. And from our experiments, the Selu model preform not well on the spesis 
dataset, so we omit to report its performance on the sepsis dataset here. 

Fig. 3. Plaintext and encrypted inference for breast cancer. 

Implementing encrypted KAN is more challenging than the Selu because almost all 
the nodes in KAN need to be approximated by polynomials. For sin, tanh and abs, we 
approximate them using polynomials in interval of [16] and with degree of 31; for sqrt 
and log, using polynomials in interval of [0, 16] and with degree of 31. Fortunately, 
the difference in final result accuracy between ciphertexts and plaintexts is almost the 
same, with about 4% at the breast dataset and 0% at the sepsis dataset. Figure 3 and 4 
demonstrate the accuracy of plaintext and ciphertext inference on test data. From our 
experiments, the homomorphic evaluation of EPDN, APDN, Selu, and KAN on the real 
datasets “breast” and “sepsis” shows little decline in accuracy. 

The machine we use to test our implementation is equipped with Intel Xeon Gold 
6248R (3.00 GHz, 24Core) and 128G (32G × 4) memory. We present the cost of 
encrypted inference for different datasets with different models in Table 3. Experiments 
demonstrate that in terms of both time and storage overhead, encrypted AI model infer-
ence has approached a highly practical level, particularly in fields like disease diagnosis, 
where real-time performance is not as critical.



144 J. Chen et al.

Fig. 4. Plaintext and encrypted inference for breast sepsis. 

Table 3. Time and memory cost for secure model inference 

Method Bladder Cancer Breast Cancer Sepsis 

LASSO 1 s, 20 MB - -

EPDN - 2 s, 196 MB 20 s, 642 MB 

APDN - 2 s, 202 MB 22 s, 658 MB 

Selu - 7 s, 548 MB -

KAN - 204 s, 4343 MB 61 s, 1904 MB 

5 Discussion and Conclusion 

Many BCa markers identified by our LASSO analysis are not reported in prior studies 
(e.g., [2]), suggesting potential value for early bladder cancer detection after further 
bioinformatics and clinical validation. 

Unlike general-purpose secure inference systems [18–21], our framework relies 
solely on HE (Fig. 1), requiring only a single communication round between centers 
and the provider. We are the first to apply HE to privacy-preserving PDN [14] inference. 
While KAN inference has only one general-purpose HE-based solution [42], we adapt 
it for medical datasets here. Prior work often uses public datasets like MNIST [22] or  
CIFAR [23]; we instead evaluate real-world datasets for bladder cancer, breast cancer, 
and sepsis. 

Compared to MPC-based medical inference systems [26], our solution—like [27– 
29]—relies entirely on HE for security, and demonstrates near-practical performance 
across diverse models and datasets. Figure 1 assumes encrypted clinical data is sent to the 
provider, which may not be feasible due to data-sharing restrictions. Figure 5 presents 
an alternative: the provider encrypts the model and deploys it locally, allowing each
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Fig. 5. Another framework for secure model inference. 

center to run inference and return encrypted results. The provider decrypts and delivers 
the plaintext diagnosis. This preserves both model and data privacy, though outputs are 
exposed. Finally, both frameworks assume semi-honest adversaries. However, in Fig. 5, 
the provider controls the encrypted computation and medical centers lack transparency 
over the process. Malicious providers could embed trapdoors to extract private data. 
Extending the framework to resist malicious behavior is an important direction. 
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