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Abstract. Although relative (kinship) detection has important applica-
tions in biological research, forensic identification, and many other fields,
the privacy of genotype data used in the process is often overlooked.
Homomorphic encryption allows for computing on encrypted genotype
data directly without decryption, making it particularly suitable for
privacy-preserving relative detection. Therefore, it became the competi-
tion topic for iDASH-2023 Track 1. However, combining existing kinship
estimation with homomorphic encryption has two challenges: the high-
dimensional matrix multiplication over encrypted data and the more
time-consuming comparison over encrypted data. In this paper, we pro-
pose a secure relative detection protocol that uses homomorphic encryp-
tion to estimate the kinship between samples from two parties while
protecting data privacy. We devise two new kinship estimation methods
avoiding ciphertext comparisons while reducing matrix multiplication to
matrix-vector multiplication. Additionally, we convert high-dimensional
matrix-vector multiplication to multiple small-dimensional matrix-vector
multiplications using binary dividing, which can then be processed with
Halevi and Shoup’s algorithm. We test the accuracy and efficiency of
the protocol on the iDASH-2023 dataset. Experimental results indicate
that the presented protocol outperforms existing methods with similar
setups.

Keywords: Relative detection - Privacy-preserving computation -
Homomorphic encryption + iDASH

1 Introduction

Relative detection (or kinship detection) via genetic databases uses DNA profiles
in a genetic database to identify potential biological relatives of an unknown indi-
vidual who contributed a query DNA sample. It relies on the principle that bio-
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logically related individuals share more genetic similarities than unrelated indi-
viduals. Close relatives like parents, siblings, and children share long stretches
of identical DNA. The applications of relative detection include forensic investi-
gations [20], ancient DNA and archeological studies [19], family DNA searching
[10], population genetics and association studies [22], etc. However, some con-
cerns allowing raw genetic data uploads to genealogical databases, even if hidden
from users, could enable genotype reconstruction of individuals in the database
through strategic uploads of datasets by attackers [9].

Related Work. In the literature, the main technical measures currently
employed for privacy protection in kinship detection include: anonymization [15],
Intel Software Guard Extensions (SGX) [3], and differential privacy [8]. Although
these methods alleviate the privacy leakage problem to a certain extent, they
have some drawbacks. According to [25], SGX is currently deprecated on client
central processing units and differential privacy may severely degrade the genetic
data quality. Homomorphic encryption, considered resistant to quantum com-
puter attacks, allows computation over ciphertexts without decryption. There-
fore, those kinship detection methods based on homomorphic encryption become
particularly important. De Cristofaro et al. [7] presented a protocol for privacy-
preserving genetic relatedness test that allows a cloud server to conduct relat-
edness tests on encrypted genetic data, reducing the test to a data matching
problem using searchable encryption [24]. Their privacy-preserving algorithms
encountered low efficiency for some situations, e.g., for edit distance and longest
common subsequence, requiring over 10%s. A projection-based approach for esti-
mating kinship and related statistics in admixed populations, named SIGFRIED,
was proposed in [25], which utilizes existing reference genotype datasets to esti-
mate admixture rates for individuals, and the homomorphic encryption scheme
CKKS [5] to protect the privacy. The modular formulation allows for efficient and
secure kinship estimation among multiple sites, leveraging homomorphic encryp-
tion for privacy protection. The method shows promise in accurately estimating
kinship with reduced computational burden compared to traditional methods
like principal component analysis [6] or expectation-maximization [13]. However,
drawbacks include the need for optimization to reduce memory usage and the
trade-offs between privacy protection and data quality. To address these issues,
the iDASH-2023 competition [18] specifically set up a track (Track 1) aimed
at developing a secure and efficient method based on homomorphic encryption
technology to utilize genetic genealogy databases to assist law enforcement while
minimizing the risk of privacy violations against innocent individuals.

Two Challenges for Kinship Estimation over Encrypted Data. Track 1 of iDASH-
2023 required participants to identify the relatedness between genetic samples
and genetic databases based on encrypted genetic data. There are three enti-
ties: A querying entity (QE) that holds the genome of a target individual, a
database owner (DE) who manages a genetic genealogy database, and a non-
colluding trusted computing entity (CE) that performs genome detection using
the encrypted data from QE and DE. The goal is for QE to find out if the
genome of the target individuals (or relatives) is in the database. Assume that
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the single-nucleotide polymorphism (SNP) data from DE is A € {0,1,2}m*
and Q € {0,1,2}™*", where d (resp. n) is the numbers of individuals in the
database (resp. query) and m is the number of available SNP variants for each
individual. The goal is to compute a kinship estimation r; (i < n) for each
query sample, from which one can decide if the query individual is related to
any individuals in the database. In this work, we use the allele-sharing kinship
coefficient (see, e.g., [21, p. 39]) for kinship detection. Roughly, r; can be com-
puted as follows: Compute R = (Q — E)T(A — E) € Z"*¢ with E’s entries
all 1; Compute r; = max(R;), where R; is the i-th row of R. The iDASH-2023
competition requires that participating teams must complete all computational
tasks within 10 min, and both A and @ must be processed in an encrypted form,
where (m, d,n) = (16 344, 2000, 400). However, when applying the above process
with homomorphic encryption, there are two main challenges. The one is high-
dimensional matrix multiplication over encrypted integers, which is too costly.
For instance, with the homomorphic encryption library SEAL [17], a matrix
multiplication of two matrices with dimensions 256 x 259 and 259 x 257 costs
about 43s over encrypted data [4]. The other is the need of n maximum of vec-
tors with dimension d, which is even more costly than matrix multiplication.
In fact, the comparison is one of the well-known operations that is unfriendly
for those homomorphic encryption schemes (e.g., BGV [2]) supporting integer
arithmetic. Based on the performance of the state-of-the-art homomorphic com-
parison method reported in [14], we estimate that it would take more than 500s
to compute once the maximum of a 2000-dimensional integer vector.

Our Contribution. This paper is partly based on the participation of the
authors (team LARC) in this competition. Although we did not ultimately
become the winners, we believe our methods and results can still provide refer-
ences and be useful for solving related problems. In particular, we propose two
adaptions of kinship estimation, which are friendly for homomorphic encryption.
Besides, we consider another framework (Fig. 1b) in this paper, which is differ-
ent from that of the competition (Fig. la). We also implement our protocol for
secure relative detection with the BGV scheme [2] implemented in the homo-
morphic encryption library SEAL [17] and test its performance with the data
from iDASH-2023.

Two Adaptions of Kinship Estimation. To address the previously mentioned chal-
lenges, we propose two adapted kinship estimation methods, which involve only
one matrix-vector multiplication. Based on an observation of the competition
data, we propose a simple method called negative-sum kinship estimation that
uses the negative-sum of the vector as a substitute for the vector’s maximum.
Experiments demonstrate that this simplified method is highly applicable to the
competition dataset, achieving Area under the ROC Curve (AUC) of 0.85. We
also propose another technique named minority-sum kinship estimation based
on singular value decomposition (SVD) that extracts the minor components
of genetic data A into only one vector and uses it to replace the entire gene
database A, which is precisely the opposite of the principal component analy-
sis (PCA). The underlying principle is roughly that (1) the closer the kinship,
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the smaller the genetic differences; (2) since most human genes are identical,
the principal components make only a limited contribution to kinship detection.
This technique simplifies matrix-matrix multiplication to matrix-vector multipli-
cation, significantly reducing the computational cost. Combining with the above
negative-sum method, the AUC achieves surprisingly 1.0 for the test data.
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(a) Three-party framework (b) Two-party framework

Fig. 1. Two frameworks for secure relative detection

In the Track 1 of iDASH-2023 competition, participants are required to iden-
tify the relatedness between genetic samples and genetic databases based on
the ciphertext of genetic data in the framework in Fig.la. It is suitable for
outsourced computation. However, according to our experiments, the compu-
tational overhead required for secure relative detection is not substantial (see
Sect. 4). Moreover, in this framework, there is a major drawback: CE can easily
collude with either of the other two parties (QE or DE), causing the third party’s
privacy to be leaked. To address this problem, we adopt a two-party computa-
tion framework, as shown in Fig. 1b. In this framework, only two participants
are involved: QE and DE, where DE is also CE, undertaking the computational
tasks in the query. The main steps of the secure relative detection protocol under
this framework are as follows: QE generates a public-private key pair of a cer-
tain homomorphic encryption scheme, encrypts the query data, and sends the
encrypted data to DE; DE uses the querying party’s evaluation key to compute
queries on encrypted data, obtains the encrypted results, and sends them to
QE; QE decrypts to obtain the query results. Note that QE’s genetic data and
query results are always encrypted, and only the private key owner can correctly
decrypt them. Since the data of DE never leaves its server, the data can be in
plaintext form during the computation, thus further reducing the overhead of
encrypted computation.

Secure Relative Detection Protocol. Computing the above two adapted kinship
estimations essentially involves computing ultra-high-dimensional matrix-vector
multiplication. To handle ultra-high-dimensional matrix-vector multiplication
over encrypted data, we reduce it into multiple small-dimensional matrix-vector
multiplications that exactly match the homomorphic encryption parameters by
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using a binary dividing method. For the small-dimensional matrix-vector multi-
plication over encrypted data, we use the diagonal encoding method [12]. This
results in a secure relative detection protocol (Protocol 3). We implement the
proposed methods for secure relative detection with the BGV [2| scheme in
SEAL. The code is publicly available at https://github.com/velenchan/larc23.
For the competition dataset, our methods can finish all the computations (400
individuals with each 16 384 SNP variants, totally 6553600 SNP data) of the
framework in Fig. 1a and b with 8 threads, 3.5 GB of memory and within 5.6 and
1.8 s, respectively, which includes encryption, encoding, evaluation, decoding and
decryption. For a comparison, securely computing the kinship estimation for 86
individuals with 60 000 SNP variants (totally 5160 000 SNP data) in SIGFRIED
[25] requires approximately 90s and 4 GB of memory with 40 threads.

2 Preliminaries

We first revoke some basics on relative detection and homomorphic encryption.

Relative Selection. The method of single-SNP averages is an efficient and
effective method for relative detection. It works as follows (taken from [21, p.
39]): Let Sp, be the genotype of an individual B at the j-th SNP, coded as
0, 1 or 2. Analogous to the definition of co-ancestry, a natural way to score the
similarity of two individuals at each SNP is as the probability of a match between
alleles drawn randomly from each. Matching homozygotes (0,0) or (2,2) score
1; discordant homozygotes (0,2) score 0; while (0,1), (1,1) and (1,2) all score
0.5. Averaged over m SNP variants, the allele-sharing kinship coefficient [23]
between individuals B and C is defined as K(B,C) = 1 + ;-xpxl, where zp
is the (row) vector with j-th entry Sp, — 1.

The BGV Homomorphic Encryption Scheme. For secure relative detec-
tion, we utilize the BGV scheme [2], which is a good choice for integer arith-
metic operations. Let R := Z[X]/(X"™ + 1) with N an integer. In BGV, the
plaintext space is R, = R/qR, where p is the plaintext modulus. The ciphertext
space of BGV is R, = R/qR, where q¢ is the ciphertext modulus, a large inte-
ger. Roughly, the BGV scheme consists of four algorithms KeyGen, Enc, Dec,
and Eval. It is semantic secure and weakly circular secure under the RLWE
assumption [16] and the circular security assumption. The BGV scheme sup-
ports single instruction multiple data (SIMD) operations, i.e., performing an
operation on a ciphertext corresponds to performing the same operation on
¢ slots of the message in parallel. In fact, the messages for BGV are vec-
tors in (Z/(pZ))* with £ = N for a power-of-two N. For & = (7;)o<i<¢ and
Yy = (¥i)o<i<s, let ct.x and ct.y be the ciphertexts of the encrypted by BGV
under a same public key, i.e., ct.& < Enc(x) and ct.y < Enc(y). Then BGV
supports the following basic operations: Add(ct.x,ct.y): Output a new cipher-
text ct.z satisfies Dec(ct.z) = « + y; Mul(ct.z, ct.y): Output a new cipher-
text ct.z satisfies Dec(ct.z) = x oy, where o is for Hadamard product, i.e.,
component-wise multiplication; CMul(z, ct.y): Output a new ciphertext ct.z sat-
isfies Dec(ct.z) = & oy; Roti(ct.x): Convert ct.x = Enc(xg, ..., z¢—1) into a new
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ciphertext ct.z that encrypts (z,...,%¢—1,%0,...,2k—1). Let A = (a; ;) be an
n X m matrix and v a vector of dimension m with m = r - n. To compute
u = A - v, we use the Halevi-Shoup’s diagonal vector encoding [11]. In diagonal
encoding, the i-th diagonal vector of the matrix A (where 0 < ¢ < n) is defined

as d;(A) < (af, [i+],, )o<j<m-

Algorithm 1 (Encrypted linear transformation on ciphertexts)

Input: ct.d[k-i+ j] that encrypts the rotated diagonal vector di.;+; towards right by
—k -1 positions, where 0 <i <[, 0<j<k,m=r-nandn=%k-I[; ctv, a
ciphertext of an m-dimensional vector v.

Output: ct.u, the resulting vector of ciphertexts.

: Initialize ct.u < Encpi (0).

:forj=0tok—1 do

ct.w[j] < Rot;(ct.v)

:fori=0tol—1 do

ct.ufi] « Add(ct.v[j], ct.d[k - i + j])o<j<k

Update ct.u := Add (ct.u, Roty.;(ct.u[i]))

: for i =0 to [logr] do

Update ct.u := Add (ct.u, Rotyi., (ct.u))
return ct.u

IR I

3 Training Model with Plaintext Data

The problem that we mainly considered here is secure relative detection in (foren-
sic) databases. The querying entity (QE, such as law enforcement) holds the
genome of a target individual, denoted by Q € {0,1,2}™*" where n is the num-
ber of individuals and m is the number of SNP variants for each individual. The
database owner (DE) manages a genetic genealogy database A € {0,1,2}m*4,
where d is the number of individuals in the database. The goal is to compute a
kinship estimation for each individual, which can be used to decide if the query
individual has relatives in the database.

Data. We validate the methods for relative detection with a genomic database
from DE and a query genotype dataset from QE. The genomic database consists
of 2000 genomes, each containing genotypes for 16344 genetic variants. The
query genotype dataset contains 400 genomes with the genotypes for the same
set of variants. Among these 400 genomes, there are exactly 200 genomes that
have relatives in the database. All data are from iDASH-2023 [18].

Kinship Estimation. We will use an adapted allele-sharing kinship coef-
ficient as our kinship estimation between two individuals. Since m is the
number of SNP variants for each individual, it is fixed, and hence indepen-
dent of the computational task. Thus, we can simplify the above formula as
K'(B,C) = xpz}. We call K'(B,C) the adapted allele-sharing kinship coeffi-
cient between B and C. According to the definition of K’(B, ('), we can first
compute R = (Q — E)T(A — E) € Z"*? where E’s entries are all 1. In fact,
the i-th row R; of R are the adapted allele-sharing kinship coeflicients between
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the i-th query individual and each individual in the database. Now we define the
mazximum kinship estimation for the i-th query individual as

r; =max(R;), i=1,--- ,n. (1)

Nevertheless, directly computing the kinship estimation in (1) on encrypted
data is considerably difficult. The difficulty primarily stems from two factors:
Firstly, directly computing over encrypted data requires the multiplication of
high-dimensional encrypted matrices (for computing R), a costly operation for
encrypted data. Secondly, for each query individual, the maximum of a d-
dimensional vector needs to be determined, which is even more expensive for
encrypted computation. Consequently, we need to adapt the plaintext algorithm
further. We now introduce two methods to avoid computing the maximum of a
vector and high-dimensional matrix multiplication.

v 1000
X [ T I |

oo [N v Maximum
—-Sum o [ | i [

400 0 A N
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

(a) Sum and maximum for
random chosen individuals  (b) Qf (A—E), avg ~ 781.6 (c) Q% (A—E), avg ~ 756.8

Fig. 2. Observations for the negative-sum kinship estimation

Negative-Sum Kinship Estimation. The first method involves using the neg-
ative sum of the vector entries to replace the vector’s maximum value, thereby
avoiding the need to compute the maximum. This is based on an observation of
the query dataset (400 individuals) provided by iDASH-2023: for these individ-
uals, the larger the maximum value of the vector R;, the smaller the sum of its
entries tend to be. Although this observation does not hold for all individuals, it
is valid for the majority. As shown in Fig. 2a, for nine randomly chosen individ-
uals, we consider the maximum values and the sum of the entries for these nine
R; vectors, with only two points, violated this observation. More specifically, for
those samples no kinship matching in the database, e.g., Q4, the distribution
of QF (A — E) appears to be a uniform distribution centered around the mean
~ 781.6 (see Fig.2b); whereas for those samples existing a kinship matching in
the database, e.g., Qs, the maximum value of Q¥ (A — E) is quite large, but the
mean ~ 756.8, and hence the sum, are smaller (see Fig. 2c).

Based on these observations, we replace maximum by the negative sum, which
means instead of computing r; = max(R;), we compute r; = — >"_| R; j, where
R; ; is the j-th entry of R;. For all query individuals, we have —R -1 = —(Q —
EYY(A-E) 1=-QY(A-E)-1+ET(A—E)-1 € Z", where 1 and E are the
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vector and matrix with all entries 1. After removing the constant independent
of the queries (the latter term), we obtain the negative-sum kinship estimation:

ri=-Q" -my €Z" (my=(A-E) 1gx; € Z™), (2)
which clearly only involves a matrix-vector multiplication.

Minority-Sum Kinship Estimation. In our second adaption on the kinship
estimation, we use the minor component of the database, which is exactly the
opposite of principal component analysis (PCA). The basic idea can be summa-
rized as the following: (1) There exists an inverse relationship between the degree
of kinship and the number of genetic variations, with closer kinship exhibiting
smaller genetic differences. (2) Given the high degree of genetic homogeneity
across the human population, the contribution of principal components to rela-
tive detection is very limited. Thus, we first extract the minor component of the
database by singular value decomposition (SVD).

For A € R™*¢ with m > d, the SVD of A can be reformulated as A =
01u1v1T+02uQv;f+- . -—|—odudv3, where 01 > 09 > ... > 04 > 0 are the singular
values of A and u; € R™ (resp. v; € R™) are the left (resp. right) singular
vectors of A. If there exists an integer ¢ < d such that o; > 0441, we usually
call Jlulv? + agugvg + -+ atutvtT the principal components of A, denoted
by A,, and call A — A, the minor components of A. For the database matrix
A of DE in the iDASH-2023 competition, we have o1 ~ 4669.6 > o9 ~ 161.2 >
... > 02000 ~ 34.9. Therefore, the principal components of A is A, = ojujv{,
from which we extract the minor components of A (that show the specificity of
SNPs): A—ujui A. Again, we use the sum to approximate the maximum (Since
we removed the principal components, the sum no longer takes the negation):

QTA - wuTA) 151 =QTA 141 — QTuiuT A - 14, € R*.  (3)

Notice that the above result is in R* while the negative-sum kinship estimation
in (2) is always in Z*. To adapt to the BGV scheme [2], which only supports
integer operations, we need to convert the results of (3) into integers as well. For
instance, we can simply define

To = QTm2 € anl’ (4)

as the minority-sum kinship estimation for the query dataset, which again only
involves a matrix-vector multiplication. Here,

mo=c-A-lg1—u (5)

with a constant ¢ and u = [c- ujul A - 1451 | € Z™. In fact, a larger ¢ implies
more accuracy but a larger plaintext modulus for BGV. We also note that we
tested multiple times by randomly extracting 80% of the data from the database
(1600 individuals), and the resulting u’s are almost identical.

Evaluation on Plaintext Data. We tested the three types of kinship esti-
mation provided above with the query data Q € Z!6384%490 and genetic data
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Table 1. Accuracy for different kinship estimation

Kinship estimation | Maximum (1) | Negative-sum (2) | Minority-sum (4)
AUC 1.0000 0.8519 1.0000

A € 7,16384x2000 given in iDASH-2023, where the constant ¢ in (5) was set to 10.
The experimental results in Table 1 show that these test data fully match the
original definition of the maximum kinship estimation in (1). There exist some
loss of accuracy for the negative-sum kinship estimation in (2), but surprisingly,
the minority-sum kinship estimation in (4) can also achieve the same level of
accuracy as the maximum one.

4 Secure Relative Detection

Adversaries Model. As pointed out in the introduction, we consider the sce-
nario involving two parties, namely, the querying entity (QE) and the database
owner (DE). QE generates the public and private keys for homomorphic encryp-
tion, while DE undertakes the computational tasks. We prove the security under
the semi-honest adversary model, also known as the honest-but-curious model.

Algorithm 2 (High-dimensional encrypted matrix-vector multiplication)

Input: For 0 < o < [2],0 < 3 < [2], ct.daplk i+ j] = Enc(p(da,g kits; —k - 7)),
where dqo g,k.i+j is the (k- ¢+ j)-th diagonal vector of the matrix Aq g, 1 <,
j<k,m=r-nandn=k-I; ctvg, ciphertexts of m-dimensional vector vg.

Output: ct.u, a ciphertext of Awv.

1: Initialize ct.u < Encp (0).
2: for a =0 to [%]—ldo

3: Initialize ct.ua < Ency (0).

4 forﬁzOto(%1fldo

5: Calling Algo. 1 with input as (ct.da,glk - ¢ + j])i,; and ct.vg returns ct.uq.
6 Update ct.u := Add (ct.w, CMul({0a.7, 15,00 —a—1).7 }, Ct.%a))

return ct.u

High-Dimensional Encrypted Matrix-Vector Multiplication. For the
BGYV scheme, if N is a power-of-two integer, then the number of slots is £ = N,
which means that one ciphertext can pack exactly ¢ integers modulo p. If
m > £ > n, then computing Av for an n X m matrix A and an m-dimensional
vector v over encrypted data can be reduced to multiple matrix-vector multipli-
cations with small dimension. For instance, the matrix A can be represented by
a block matrix (Aa,g)a<[%]ﬂ<[%1, where each block A, g is a i X M matrix.
The vector v can be represented by (o) p<m] in the same manner. For effi-
ciency, we may further assume that m = £ and 7 = v/£. Note that it follows from
n < £ that the output of Algorithm 2 is a single ciphertext.
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The Main Protocol. Note that both (2) and (4), simplified from (1), only
involve a matrix-vector multiplication, which can be computed by Algorithm 2.
Now we present the main protocol as Protocol 3.

Communication. By partitioning both the matrix and the model vector into
blocks of QT € R™™ and m € R™, where m = ¢. For QE, the matrix is
divided into {%] . (%W blocks, and each block is encrypted into 7 ciphertexts. As
a result, QE sends 72 {%] - [%1 ciphertexts to DE. Since the output of Algorithm

2 is a single ciphertext, DE needs to send only one ciphertext to QE.

Security. The semantic secure of the BGV scheme preserves the privacy of the
query data @ and the result u of QE, preventing DE from obtaining any informa-
tion about @ and w. Although the model data m is involved in the computation,
it is difficult to infer more information about m than that implied by QTm = wu.
Note that the equation can still be established even if relative detection is carried
out in an ideal world. Therefore, Protocol 3 does not leak more information on
m than in the ideal world and hence is secure for DE.

Protocol 3 (Secure relative detection)
Input of QE: The query data Q € {0,1,2}™"", blocksize 0 < a < [2],0< 3 < |
and the security parameter A, where block matrix size isn xm, n =k-l, and m = r-
Input of DE: The model data m € Z™ (either m; in (2) or my in (5))
QE:

1: (p,q, N,7) < BGV.Setup(1*).

2: (sk, pk) + BGV.KeyGen(p, q, N, 7).

3: Set ct.da. gk - i+ j] < BGV.Enco(p(dopiiss; ki) for 0 <i<land0<j <k,

where dq g k.i+; is the (k- ¢ + j)-th diagonal vector of the block matrix Qzﬁ

4: Send (ct.da [k - i + j])a,s,i,; to DE.
DE:

5: ct.mg < BGV.Encp (mg).

6: Calling Algo. 2 with input as (ct.do glk - @ + j])a,8,i,; and (ct.mg)g returns ct.u.
7: Send ct.u to QE.
QE:

8: Decrypt u + Decy (ct.u) and return wu.

S

Performance. We implement Protocol 3 with the BGV scheme in SEAL [17].
In this section, we report the computational efficiency, communication overhead,
and accuracy of Protocol 3. All the computations are carried out in Ubuntu
22.04 on a personal computer with Intel Core i9-12900K CPU (3.20 GHz) and
32GB RAM. In addition, For further speedup, we use 8 threads parallel com-
putation with OpenMP. All experiments have identical testing settings with
the same security parameters. In particular, the plaintext modulus of BGV is
p = 33538049 == 225, the polynomial degree is N = 2'3 = 8,192, and the bit size
of the ciphertext modulus is log g ~ 200 = 41 + 39 + 40 + 40 + 40, which implies
128-bit security according to [1]. For the data described in Sect. 3, we compute in
advance the negative-sum kinship detection model m in (2) and the minority-
sum kinship detection model ms in (5) from all data (2000 individuals) in the
dataset, respectively.
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The performance of Protocol 3 is presented in Table 2, where AUC is com-
puted with the resulting kinship estimation and the 0-1 sequence extracted
from the query genotype dataset. As illustrated in Table 2, both models share
an acceptable memory and a computational overhead. The timings include ini-
tialization, reading the query and model data, encrypting the data, computing
with encrypted data, and decrypting the results. Furthermore, the accuracy of
the results is almost the same as that of computing with plaintext data.

Table 2. Performance of Protocol 3

Model | Memory (MB) | Total Time (s) | AUC
my 3459.98 1.71 0.85
mo 3483.64 1.80 1.00

For comparison, we also present the performance of our submission for
iDASH-2023 in Table 3. As shown in the Table 3, compared to the computation
model required by iDASH-2023 (Fig. la), Protocol 3 achieves a 3x speedup. The
reason is that, in Protocol 2, it is only necessary to read the model parameters
m, without the need to read and encrypt the database matrix A.

Table 3. Detailed timing (s) cost in iDASH-2023 style

Model | Init |Read Q | Enc. Q | Read A | Enc A | Comput | Dec | Total
mi 0.18710.153 0.924 |0.818 3.001 | 0.446 0.002 | 5.531
mo 0.185|0.152 0.959 ]0.819 2.963 |0.495 0.006 | 5.579

As another comparison, securely computing the kinship estimation for 86
individuals with 60 000 SNP variants (totally 5160 000 SNP data) by the state-of-
the-art method SIGFRIED |[25] requires approximately 90 s and 4 GB of memory
with 40 threads. Their experiments were based on the CKKS [5] scheme imple-
mented in SEAL, with 128-bit security as well. Recall that in our test, the query
data include 400 individuals with 16 384 SNP variants (totally 6553600 SNP
data). With 8 threads, our methods cost 3.5 GB of memory, and 5.6 and 1.8s
for the two frameworks in Fig. 1, respectively.

5 Conclusion

Partly based on the homomorphic encryption track (Track 1) of the iDASH-2023
competition, we presented an efficient privacy-preserving protocol for relative
detection based on homomorphic encryption (Protocol 3). To meet the needs
of homomorphic encryption, we also proposed two new methods for kinship
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estimation, which perform well on the competition dataset. However, it should
be noted that the effectiveness of these two methods for more general cases
requires further research.
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