
Homomorphic Matrix Operations under Bicyclic Encoding ∗

Jingwei Chen Linhan Yang Wenyuan Wu Yang Liu Yong Feng

April 18, 2024

Abstract

Homomorphically encrypted matrix operations are extensively used in various privacy-preserving applications.
Consequently, reducing the cost of encrypted matrix operations is a crucial topic on which numerous studies have
been conducted. In this paper, we introduce a novel matrix encoding method, named bicyclic encoding, under which
we propose two new algorithms for encrypted matrix multiplication. One algorithm outperforms the stat-of-the-art
algorithms in theory, while the other, combined with the segmented strategy, performs well in practice, particularly
for matrices with high dimensions. Additionally, our algorithms offer greater flexibility in matrix dimensions,
whereas most previous studies focus on square matrix multiplication. Another noteworthy advantage of bicyclic
encoding is that it allows for transposing an encrypted matrix entirely free. A comprehensive experimental study
based on our proof-of-concept implementation shows that each algorithm introduced in this paper has specific
scenarios outperforming existing algorithms, achieving speedups ranging from 2x to 38x.

Keywords: Matrix multiplication, Fully homomorphic encryption, SIMD, Bicyclic encoding

1 Introduction
Privacy-preserving computing or privacy-enhancing technologies, capable of protecting data privacy and fully
exploiting data value, is an exceptionally popular area of research. Fully Homomorphic Encryption (FHE) enables
computations to be performed on encrypted data without the need for decryption [43, 22], and hence offering
a powerful tool for privacy-preserving computation, such as outsourcing computation [21], bioinformatics [50],
vehicle network [48], machine learning [40], etc. Among the numerous privacy-preserving applications enabled by
homomorphic encryption, matrix operations emerge as a core fundamental. Therefore, the importance of matrix
multiplication over encrypted data is self-evident. In this paper, we investigate matrix multiplication over data
encrypted using an FHE scheme that supports Single Instruction Multiple Data (SIMD), such as the BGV [10] and
B/FV [9, 18] schemes for integer arithmetic, and the CKKS scheme [12] for approximate arithmetic.

Since Gentry’s pioneering work [22], FHE has rapidly developed, giving rise to various schemes such as BGV
[10], B/FV [9, 18], CKKS [12], FHEW [15], TFHE[14], and numerous optimizations like data packing for SIMD [46],
bootstrapping [25, 32, 34, 51], etc. However, homomorphic matrix multiplication remains a bottleneck in practice. For
example, Huang et al. reported in [29] that it takes nearly 6 minutes for an encrypted matrix multiplication with
dimensions 2048 × 8 and 8 × 2048.

Almost all existing work about homomorphic matrix multiplication employed schemes that support SIMD, i.e.,
BGV, B/FV, or CKKS. For these schemes, computational efficiency is primarily influenced by two key factors. The first
is multiplicative depth (including ciphertext-ciphertext multiplication (Mul) and plaintext-ciphertext multiplication
(CMul)), a metric that directly impacts the computational efficiency of all known FHE schemes. This is because more
multiplicative depths imply a larger ciphertext modulus or an increased number of bootstrappings. The second is the
number of required ciphertext rotations (Rot) on the packed ciphertext. According to our test, for the CKKS scheme
implemented in Microsoft SEAL [38], the efficiency ratio between a ciphertext rotation and a ciphertext multiplication
can be as large as 8 : 1. Similar observations can be found in [7] as well. Consequently, the primary objective of this
paper is to optimize both the multiplicative depth and the required number of ciphertext rotations for encrypted
matrix multiplication.

∗Jingwei Chen, Wenyuan Wu and Yong Feng. Chongqing Key Laboratory of Secure Computing for Biology, Chongqing Institute of Green
and Intelligent Technology, Chinese Academy of Sciences; Chongqing College, University of Chinese Academy of Sciences. Email: {chenjingwei,
wuwenyuan, yongfeng}@cigit.ac.cn

Linhan Yang (Corresponding author) and Yang Liu. School of Information Science and Engineering, Chongqing Jiaotong University. Email:
liuyang13@cqjtu.edu.cn, linhanyang@mails.cqjtu.edu.cn

This work was partially supported by National Key Research and Development Program of China (2020YFA0712303), Natural Science Foundation
of Chongqing (cstb2023nscq-msx0441, cstc2021jcyj-msxmx0821, cstc2021yszx-jcyjx0004, 2022yszx-jcx0011cstb, cstb2023yszx-jcx0008), and Western
Young Scholars Program of CAS.

1

1.1 Related Work
Secure matrix multiplication has plenty of applications, making it a highly active and impactful research area in
privacy-preserving computation. The subject offers diverse perspectives for investigation, including secure multi-
party computation [20, 16, 54, 11, 6], information-theoretically privacy [56], etc. Here, we mainly focus on encrypted
matrix multiplication methods based on FHE schemes supporting SIMD, although there exist many other algorithms,
e.g., Hiromasa et al. [26, 5], based on a matrix version of GSW [23].

A plaintext of an FHE scheme that supports SIMD is usually an element in a certain polynomial ring, say
𝑅 = Z[𝑋]/⟨𝑋𝑁 + 1⟩. Polynomials in 𝑅 can be represented in two equivalent ways. One is coefficient representation,
corresponding to the coefficient vector of the polynomial. The other is evaluation representation, i.e., the values of the
polynomial at 𝑁 points. A plaintext slot is a coefficient for the coefficient representation or a value for the evaluation
representation. Denote by ℓ the number of slots that the FHE scheme supports, e.g., ℓ = 𝑁 for CKKS [12] under
coefficient representation, while ℓ = 𝑁 /2 for CKKS under evaluation representation, provided 𝑁 is a power-of-two
integer.

Roughly speaking, all existing algorithms for encrypted matrix multiplication can be categorized into two types.
For the first type, data is encoded into the coefficients of plaintext polynomials, while for the second type, data is
encoded as evaluations. Both types support SIMD operations.

Encoding data in coefficients Duong et al. [17] generalize Yasuda et al.’s method for secure inner product [53, 52],
and present two algorithms for encrypted matrix multiplication. Suppose that a ciphertext encodes a vector of
dimension at most ℓ . Then the two algorithms of Duong et al. support maximal dimensions of 𝑂 (ℓ1/2) and 𝑂 (ℓ1/3),
and require 𝑂 (ℓ1/2) and only one Mul, respectively. The drawback of this method is its lack of efficiency in handling
consecutive matrix multiplications. Later on, Mishra et al. [39] extended it to support 𝑘 matrix multiplications
successively. However, the maximal dimension is limited only to 𝑂 (ℓ1/(𝑘+1)), which makes it impractical. Inspired
by related techniques introduced in [34], Zheng et al. [55] recently proposed a new framework for homomorphic
matrix multiplication under BGV, which supports consecutive matrix multiplication and requires only constant Muls
and CMuls, and 𝑂 (log𝑑) Rots for square matrix multiplication of dimension 𝑑 when 𝑑 = 𝑂 (3√

𝑁), achieving the best
theoretical complexity bound, where 𝑁 is the ring dimension used in BGV. Zheng et al. also presented a Strassen
variant [47] for matrices with large dimensions. However, since their algorithm relies on a hypercube structure of
the plaintext space, it does not support B/FV or CKKS. In addition, for all the coefficient encoded methods, to reuse
partial entries of the encrypted resulting matrix, we are typically compelled to resort to extra operations for switching
between the coefficient and evaluation representations, which may slow down the computation.

Table 1: The cost of evaluation encoded algorithms for a (𝑛,𝑚,𝑝) matrix multiplication
over encrypted data, where (𝑛,𝑚,𝑝) means that the two matrices to be multiplied are
of dimensions 𝑛 ×𝑚 and𝑚 × 𝑝 , respectively, and ℓ is the number of plaintext slots.

Method Max. dim. #Ctxts #Mul #CMul #Rot #Mult. depth
[24, 25]∗ ℓ (𝑑 ,𝑝) 𝑝𝑑 0 2𝑝𝑑 1

2 1Mul
[35, 49] ℓ (𝑛,𝑚) 𝑚𝑛 𝑚𝑛 𝑚𝑛 log𝑝 1Mul + 1CMul
[41]†

√
ℓ (1, 1) 𝑑 𝑑 𝑑 log𝑑 +𝑑 1Mul + 1CMul

[31]†
√
ℓ (1, 1) 𝑑 5𝑑 3𝑑 + 5𝑑 1

2 1Mul + 2CMul
[30]†

√
ℓ (1, 1) 𝑑 2𝑑 2𝑑 + 4𝑑 1

2 1Mul + 1CMul
[44]† 3√

ℓ (1, 1) 1 2𝑑 2𝑑 + 3 log𝑑 − 2 1Mul + 1CMul
[13, 28]‡

√
ℓ (1, 1) 𝑚 𝑚 𝑚 log𝑑 +𝑚 1Mul + 1CMul

Algo. 5¶
√︁
ℓ/2 (1, 1) 𝑚 0 2𝑚 + 2 1 Mul

Algo. 6†, ∗∗ 3√
ℓ (1, 1) 1 0 3 log𝑑 1Mul

∗ 𝑑 = max(𝑛,𝑚). † 𝑑 = max(𝑛,𝑚,𝑝). ‡ 𝑑 = max(𝑚,𝑝).
¶ (𝑛,𝑚,𝑝) are pairwise coprime and max(𝑛,𝑝) < 𝑚.
∗∗ (𝑛,𝑚,𝑝) are pairwise coprime and𝑚 is a power-of-two integer.

Encoding data in evaluations There are also algorithms that encode matrix data in evaluations of plaintext
polynomials, which naturally support consecutive matrix multiplication. We summarize these algorithms in Table 1.
Halevi and Shoup investigate linear transformation on encrypted vector [24, 25], i.e., matrix-vector multiplication.
Their methods can be directly extended to matrix multiplication. Lu et al. [35] and Wang and Huang [49] extended
Halevi and Shoup’s method for matrix-matrix multiplication based on the row-order and column-order encoding
methods, respectively. Rathee et al. [41] considered an encrypted version of a matrix multiplication algorithm
presented in [19]. Jiang et al. presented an algorithm for matrix multiplication over encrypted data in [31]. It uses
SIMD operations and the technique for linear transformation [24, 25]. A recent survey [4] identifies Jiang et al.’s

2

algorithm [31] as the state-of-the-art for FHE-based matrix multiplication. Based on Jiang et al.’s algorithm [31],
Huang et al. [29] improved the block matrix multiplication for rectangular matrices with special shapes. Chiang [13]
and Huang and Zong [28] presented a scheme for non-square matrices, which can be considered as a generalization
and optimization of [41]. Jang et al. [30] presented an adapted CKKS scheme to support data with tensor structure
better and improved Jiang et al.’s algorithm [31] in the number of required Rots and CMuls. However, the security
of Jang et al.’s variant of CKKS is based on a non-standard hardness assumption called multivariate polynomial
learning with errors (m-RLWE). Rizomiliotis and Triakosia [44] introduced a new method for matrix multiplication
over encrypted data. This method fully leverages packing techniques, reducing the required number ofMuls to just
one. However, it only supports matrix dimensions ℓ1/3.

Other optimizations In addition to optimizing the number of rotations, another optimization direction is to
accelerate Rot itself. For example, the hoisting technique proposed in [25] optimizes scenarios involving multiple
rotations on the same ciphertext, and the double hoisting introduced by Bossuat et al. [8] makes further progress.
These techniques were recently used to accelerate related matrix operations in principal component analysis (PCA)
[37]. For encrypted matrices with large dimensions, the Strassen algorithm [47] has been applied recently to this area
in [45, 27, 55].

1.2 Contribution
Let 𝑨 and 𝑩 be two matrices with dimensions 𝑛 ×𝑚 and𝑚 × 𝑝 , respectively. Denote by (𝑛,𝑚,𝑝) matrix multiplication
the multiplication between 𝑨 and 𝑩. Our first result is

Theorem 1. Let (𝑛,𝑚,𝑝) be pairwise coprime integers and ℓ the number of slots that the FHE scheme supports.

1. If ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝}, there exists an algorithm (Algorithm 5) that computes a homomorphically encrypted
(𝑛,𝑚,𝑝) matrix multiplication within 𝑚 ciphertext-ciphertext multiplications (Muls), and 2(𝑚 + log ⌈𝑝/𝑚⌉ +
log ⌈𝑛/𝑚⌉ + 1) rotations on ciphertexts (Rots), and costs only one Mul multiplicative depth.

2. If ℓ > 𝑚𝑛𝑝 , there exists an algorithm (Algorithm 6) that computes a homomorphically encrypted (𝑛,𝑚,𝑝) matrix
multiplication with only one Mul and CMul, and at most log ⌈𝑚⌉ + log ⌈𝑛⌉ + log ⌈𝑝⌉ Rots, and costs one Mul
and one CMul multiplicative depth. In particular, if 𝑚 is a power-of-two integer, the algorithm can finish the
computation with only one Mul and at most log ⌈𝑚⌉ + log ⌈𝑛⌉ + log ⌈𝑝⌉ Rots, without CMul, and hence costs only
one Mul multiplicative depth.

Algorithm 5 and 6 support all SIMD-supported FHE schemes (e.g., BGV, B/FV, CKKS) and features the following:

The required number of ciphertext operations Whenmax(𝑛,𝑝) < 𝑚, the required number of Rots of Algorithm
5 is 2𝑚 + 2, which is the best among those algorithms supporting 𝑂 (

√
ℓ) dimensions in Table 1. For those algorithms

supporting 𝑂 (3√
ℓ) dimensions, Algorithm 6, together with [55], requires only a constant number of Muls and CMuls,

and 𝑂 (log𝑑) Rots with 𝑑 = max(𝑛,𝑚,𝑝), better than all other existing algorithms supporting consecutive matrix
multiplication. Zheng et al.’s algorithm encodes the data in coefficients, requires oneMul and CMul multiplicative
depths, and only works for the BGV scheme, while Algorithm 6 encodes data in evaluations, costs only one Mul
multiplicative depth if𝑚 is a power-of-two, and works for all SIMD-supported FHE schemes.

Multiplicative depth Both Algorithm 5 and 6 share the same multiplication depth as the algorithm based on
Halevi-Shoup’s linear transformation, requiring only one Mul depth. This is the lowest among all algorithms in
Table 1. This implies that encryption parameters can be optimized further for higher efficiency. Compared to the
Halevi-Shoup linear transformation method, our approach utilizes fewer ciphertexts. For instance, our computation
yields a single ciphertext, while their method produces 𝑝 ciphertexts as results.

Dimension flexibility Most algorithms in the literature are designed specifically for square matrix multiplication.
For non-square matrices, zero padding is required for compatibility. Our algorithm allows (𝑛,𝑚,𝑝) matrix multi-
plication and hence features dimension flexibility. Although our algorithm has the constraint of pairwise coprime
dimensions (𝑛,𝑚,𝑝), this limitation can also be mitigated through zero-padding. In fact, due to matrix dimensions
and the number of slots in FHE schemes not always matching, almost all FHE-based matrix multiplication algorithms
inevitably require zero-padding, albeit in different forms. While other algorithms (e.g., [31]) may need to fill small
matrices into fixed-size square matrices, ours may need to append a few rows or columns. For example, if we have a
16 × 16 matrix 𝑨 to be multiplied with ℓ = 4096, then for Jiang et al.’s algorithm [31] 𝑨 will be padded to a 64 × 64
matrix, while for Algorithm 5, 𝑨 can be padded to a matrix with coprime dimensions, say a 16 × 17 matrix.

3

Transpose for free Our algorithms rely on a novel matrix encoding method given in Section 3.1. As a benefit of
this encoding, the transpose of an encrypted matrix can be computed for completely free; see Corollary 7. In previous
algorithms, e.g., [31], the transpose of an encrypted matrix is reduced to a higher-dimensional linear transformation.
This feature is expected to accelerate those applications involving matrix transpose, e.g., computing the covariance
matrix in PCA, backpropagation in deep learning, etc.

However, Algorithm 5 (resp. 6) has a limitation: It requires ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝} (resp. ℓ > 𝑚𝑛𝑝). Assuming
𝑛 ≈𝑚 ≈ 𝑝 gives 𝑛 ≈

√︁
ℓ/2 (resp. 𝑛 ≈ 3√

ℓ), while Jiang et al.’s algorithm [31] supports encrypted matrix multiplication
of dimension

√
ℓ . Thus, for handling high-dimensional matrices in a block-wise manner, the number of blocks would

be a bit more than that of some existing algorithms, e.g., Jiang et al.’s [31]. This may lead to a lower efficiency of
the block-wise algorithms based on Algorithm 5 or 6. To address this problem, we fully exploit the properties of our
novel encoding method (on which Algorithm 5 and 6 depends) and introduce a segmented version of Algorithm 5 for
multiplying high-dimensional matrices (Algorithm 8), where the utilization rate of slots achieves nearly 100%, similar
to, e.g., Jiang et al.’s algorithm. This leads to our second result:

Theorem 2. Assume that (𝑛,𝑚,𝑝) are pairwise coprime integers and ℓ is the number of slots the FHE scheme supports.
Then there exists an algorithm (Algorithm 8) that computes the homomorphically encrypted (𝑛,𝑚,𝑝) matrix multiplication
within𝑚 ·

⌈𝑛𝑝
ℓ

⌉
ciphertext-ciphertext multiplications (Mul), and 2𝑚 ·

⌈𝑛𝑝
ℓ

⌉
rotations on ciphertexts (Rot), (4 ·

⌈𝑛𝑝
ℓ

⌉
+ 2)𝑚 +

𝑛 + 𝑝 plaintext-ciphertext multiplications (CMul), and costs only one Mul and one CMul multiplicative depth.

As a consequence, Algorithm 8 reduces the number of Rots by a factor 1
3 and saves one depth of CMul compared

with the state-of-the-art algorithm for high-dimensional encrypted rectangular matrices [29]. Furthermore, it depends
on a so-called segmented matrix multiplication, which is different from the traditional block matrix multiplication.
By applying this technique to an existing algorithm for encrypted matrix multiplication [35] and incorporating
several optimizations in Section 6, we obtain Algorithm 10, which asymptotically requires the fewest Rots, even
outperforming Zheng et al.’s block algorithm [55] when the dimension tends to infinity.

We implement all Algorithms 5, 6, 8 and 10, with CKKS in SEAL [38], including the naïve (textbook) block
version and the Strassen [47] version of Algorithm 5 as well. A comprehensive experimental study demonstrates
the performances of these algorithms and identifies how to select different algorithms for different cases to achieve
optimal efficiency. In particular, our implementation of Algorithm 8 can compute a (2048, 8, 2048) encrypted matrix
multiplication in about 81s, achieving a 2.6x speedup compared with the state-of-the-art algorithm for rectangular
matrices [29], and for a task with dimension (1024, 1024, 1024), it costs about 1200s, 5x faster than the block version
of Jiang et al.’s algorithm [31]; Algorithm 6 can compute a (15, 16, 17) encrypted matrix multiplication in about
13ms, about 16x faster than the algorithm presented in [44]; Algorithm 10 with some optimizations can compute a
(32, 33, 13847) encrypted matrix multiplication in about 8.24s, about 38x faster the block algorithm based on [31]. See
Section 7 for more details.

1.3 Technique Overview
Our results mainly rely on two techniques: bicyclic encoding for matrices and segmented matrix multiplication.

Bicyclic encoding We first define a novel encoding map that identifies an 𝑛 ×𝑚 matrix as a vector of dimension
𝑚𝑛, provided 𝑛 and𝑚 coprime. We call it the bicyclic encoding, which can be roughly viewed as an extension of
the diagonal vector of a matrix employed in Halevi-Shoup’s algorithm [24]. It follows from the Chinese Remainder
Theorem (CRT) that the coprime restriction on 𝑛 and𝑚 guarantees that Z/(𝑚𝑛Z) � Z/(𝑛Z) ⊗ Z/(𝑚Z), which implies
that a single vector is enough to traverse all elements of an 𝑛 ×𝑚 matrix. For instance, the bicyclic encoding for

𝑨 =

(
0 1 2 3 4
5 6 7 8 9

)
and 𝑩 =

©«
𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝐺 𝐻 𝐼

𝐽 𝐾 𝐿

𝑀 𝑁 𝑂

ª®®®®®¬
(1)

are 𝒂 = (0, 6, 2, 8, 4, 5, 1, 7, 3, 9) and 𝒃 = (𝐴,𝐸, 𝐼 , 𝐽 ,𝑁 ,𝐶 ,𝐷 ,𝐻 ,𝐿,𝑀 ,𝐵, 𝐹 ,𝐺 ,𝐾 ,𝑂), respectively. In particular, the 𝑘-th
entry of 𝒂 for 𝑘 = 0, 1, . . . , 9 is the (𝑖 , 𝑗)-entry of 𝑨 with 𝑖 = 𝑘 mod 2 and 𝑗 = 𝑘 mod 5.

Let 𝑨 and 𝑩 be two matrices to be multiplied, with dimensions (𝑛,𝑚) and (𝑚,𝑝), respectively, satisfying (𝑛,𝑚,𝑝)
pairwise coprime and𝑚 > max(𝑛,𝑝), where the latter condition is just for simplicity and will be removed in our
main algorithm. Assume that vectors 𝒂 and 𝒃 are obtained via the bicyclic encoding of 𝑨 and 𝑩, respectively. Then
the bicyclic encoding of the resulting matrix 𝑿 = 𝑨𝑩 is exactly

∑
0≤𝑖<𝑚 𝒂𝑖 ⊙ 𝒃𝑖 , where ⊙ denotes component-wise

multiplication, and 𝒂𝑖 and 𝒃𝑖 are of dimension 𝑛𝑝 obtained by rotating the original 𝒂 and 𝒃 , respectively. Taking 𝑨
and 𝑩 as in Eq. (1), i.e., (𝑛,𝑚,𝑝) = (2, 5, 3), we give in Table 2 an illustrative example for a matrix multiplication
algorithm (Algorithm 1) under bicyclic encoding. We should note that the number of rotation positions for 𝒂𝑖 and 𝒃𝑖

4

Table 2: An illustrative example for Algorithm 1, where 𝑠𝑎 (resp. 𝑠𝑏) is the
step size for rotating 𝒂 (resp. 𝒃) to the left.

𝑖 (𝑠𝑎 , 𝑠𝑏) 𝒂𝑖 𝒃𝑖 𝒂𝑖 ⊙ 𝒃𝑖
0 (0, 0) (0, 6, 2, 8, 4, 5) (𝐴,𝐸, 𝐼 , 𝐽 ,𝑁 ,𝐶) (0𝐴, 6𝐸, 2𝐼 , 8𝐽 , 4𝑁 , 5𝐶)
1 (8, 3) (3, 9, 0, 6, 2, 8) (𝐽 ,𝑁 ,𝐶 ,𝐷 ,𝐻 ,𝐿) (3𝐽 , 9𝑁 , 0𝐶 , 6𝐷 , 2𝐻 , 8𝐿)
2 (6, 6) (1, 7, 3, 9, 0, 6) (𝐷 ,𝐻 ,𝐿,𝑀 ,𝐵, 𝐹) (1𝐷 , 7𝐻 , 3𝐿, 9𝑀 , 0𝐵, 6𝐹)
3 (4, 9) (4, 5, 1, 7, 3, 9) (𝑀 ,𝐵, 𝐹 ,𝐺 ,𝐾 ,𝑂) (4𝑀 , 5𝐵, 1𝐹 , 7𝐺 , 3𝐾 , 9𝑂)
4 (2, 12) (2, 8, 4, 5, 1, 7) (𝐺 ,𝐾 ,𝑂 ,𝐴,𝐸, 𝐼) (2𝐺 , 8𝐾 , 4𝑂 , 5𝐴, 1𝐸, 7𝐼)

is nontrivial; see Section 3.2 for details. Clearly, this algorithm requires 5 component-wise vector multiplications and
8 vector rotations for this example, which leads Algorithm 5 for matrix multiplication over encrypted data.

If we repeat 𝒂 and 𝒃 with 𝑝 and 𝑛 times, respectively, the updated 𝒂 and 𝒃 are both𝑚𝑛𝑝-dimensional vectors. Now
the segment-sum (see Definition 4) of 𝒂 ⊙ 𝒃 with length 𝑛𝑝 gives the bicyclic encoding of 𝑿 = 𝑨𝑩, which implies
Algorithm 6 that requires only oneMul and at most 3 log𝑑 Rots for a (𝑛,𝑚,𝑝) encrypted matrix multiplication if𝑚
is a power-of-two, where 𝑑 = max(𝑛,𝑚,𝑝). Although Zheng et al.’s algorithm [55] achieves a similar result using a
totally different method, their algorithm requires that the ring used in the FHE schemes has a tensor structure, and
hence only works with BGV, while Algorithm 6 works with all SIMD-supported FHE schemes, including BGV, B/FV,
and CKKS.

Segmented matrix multiplication On one hand, for high dimensional matrix multiplication, a matrix inevitably
needs to be encrypted into multiple ciphertexts, and a typical approach is to employ block matrix multiplication
([31, 29]). On the other hand, due to the constraint that the number of plaintext slots in the FHE schemes is usually
a power of 2, and the pairwise coprime among (𝑛,𝑚,𝑝) implies the dimensions of the matrices must not be all
power-of-two integers, ciphertext rotations become less straightforward than those in [31, 29]. More precisely, to
ensure the correctness of Algorithm 5, we have to repeat the encoded matrix data once more and place it in a single
plaintext before encryption. This results in the dimension that Algorithm 5 supports for nearly square matrices is
about

√︁
ℓ/2, whereas for the algorithms in [31], it is

√
ℓ . Consequently, if Algorithm 5 is applied to block matrix

multiplication, the number of ciphertexts will be more than that of algorithms in [31, 29]. To address this problem,
we introduce a technique called segmented matrix multiplication.

The basic idea of segmented matrix multiplication is to implement encrypted matrix multiplication strictly
following the plaintext algorithm for matrix multiplication under bicyclic encoding. Continuing with the matrices
from equation (1) as an example, suppose the number of plaintext slots ℓ = 2. Then, the bicyclic encoding of 𝑨
will be encrypted into five ciphertexts (ct.𝒂𝑖)0≤𝑖<5 corresponding to encryptions of (0, 6), (2, 8), (4, 5), (1, 7) and
(3, 9). The primary task then becomes how to perform rotations on these ciphertexts. To fulfill this function, we
design a subroutine called Long Rotation (LongRot). For instance, running a LongRot on (ct.𝒂𝑖)0≤𝑖<5 with step size
one (i.e., rotating one position towards left) returns ciphertexts of (6, 2), (8, 4), (5, 1), (7, 3) and (9, 0). Based on
LongRot, we present Algorithm 8, which supports high-dimensional encrypted matrix multiplication. For encrypted
rectangular matrix multiplication, Algorithm 8 reduces the number of Rots by a factor 1

3 and saves one CMul depth,
compared with the state-of-the-art algorithm [29]. The experiment in Section 7 shows that Algorithm 8 is efficient for
high-dimensional matrix multiplication. Applying the segmented technique with several optimizations to an algorithm
in [35] leads to an algorithm requiring the least number of Rots asymptotically among all existing algorithms.

Outline In Section 2, we provide the necessary preliminaries. In Section 3, we introduce the bicyclic encoding
method and discuss matrix operations under this encoding, including matrix transpose, matrix multiplication, and
switching between bicyclic encoding and the commonly used row/column encoding. In Section 4, we present the
encrypted version of the aforementioned matrix multiplication algorithms and analyze their cost. In Section 5, we
present the encrypted segmented matrix multiplication and apply the segmented strategy to Lu et al.’s algorithm in
Section 6. In Section 7, we describe our implementation of these algorithms with CKKS in Microsoft SEAL [38] and
compare the performance with existing algorithms. We conclude this paper with Section 8.

2 Homomorphic Operations
We give the basics of FHE in Appendix A. Here, we recall some homomorphic operations of an SIMD-supported FHE
scheme. For convenience, we take CKKS [12] as an example.

In CKKS, the plaintext space isM = Z[𝑋]/⟨𝑋𝑁 + 1⟩ =: 𝑅 while messages are complex vectors in Cℓ with ℓ = 𝑁 /2,
where 𝑁 is a power-of-two integer. The ciphertext space of CKKS is C = 𝑅/𝑞𝑅, where 𝑞 is the ciphertext modulus, a
large integer. The restriction of the canonical embedding R[𝑋]/⟨𝑋𝑁 + 1⟩ → Cℓ on 𝑅 maps𝑚(𝑋) ∈ 𝑅 into 𝒎 ∈ Cℓ by
evaluating𝑚(𝑋) at the primitive 2𝑁 -roots of unity 𝜉 𝑗 = 𝜉5

𝑗 for 0 ≤ 𝑗 < ℓ . The inverse of the canonical embedding

5

encodes a message 𝒎 as a plaintext 𝑚(𝑋). Thus, CKKS naturally supports SIMD operations, i.e., performing an
operation on a ciphertext corresponds to performing the same operation on ℓ = 𝑁 /2 entries of 𝒎 in parallel. Each
entry of the message 𝒎 ∈ Cℓ is called a plaintext slot.

For 𝒙 = (𝑥𝑖)0≤𝑖<ℓ and 𝒚 = (𝑦𝑖)0≤𝑖<ℓ , let ct.𝒙 and ct.𝒚 be the ciphertext encrypted by CKKS under the same public
key. CKKS supports the following basic operations:

• Add(ct.𝒙 , ct.𝒚): Dec(Add(ct.𝒙 , ct.𝒚)) = 𝒙 +𝒚.

• Mul(ct.𝒙 , ct.𝒙): Dec(Mul(ct.𝒙 , ct.𝒙)) = 𝒙 ⊙𝒚, where ⊙ is for component-wise multiplication.

• CMul(𝒎, ct.𝒙): Dec(CMul(𝒎, ct.𝒙)) = 𝒎 ⊙ 𝒙 , where 𝒎 is a message in Cℓ ; for 𝑚 ∈ C, CMul(𝑚, ct.𝒙) is a
special case of CMul(𝒎, ct.𝒙) with 𝒎 = (𝑚, . . . ,𝑚).

• Sl[𝑖 ,𝑗] (ct.𝒙) convert a ciphertext ct.𝒙 = Enc(𝑥0, . . . ,𝑥ℓ−1) into a ciphertext that encrypts (0,𝑥𝑖 ,𝑥𝑖+1, . . . ,𝑥 𝑗 , 0),
equivalent to CMul(𝒎, ct.𝒙) for (0, . . . , 0︸ ︷︷ ︸

𝑖−1

, 1, 1, . . . , 1︸ ︷︷ ︸
𝑗−𝑖+1

, 0, . . . , 0).

• Rot𝑘 (ct.𝒙) convert ct.𝒙 = Enc(𝑥0, . . . ,𝑥ℓ−1) into a new ciphertext Enc(𝑥𝑘 , . . . ,𝑥ℓ−1,𝑥0, . . . ,𝑥𝑘−1).

It is well-known that the computational efficiency of an FHE-based algorithm is primarily influenced by two key
factors, i.e., the multiplicative depth (including Mul and CMul) and the number of rotations (Rots) on the ciphertext.
The deeper the multiplication depth, the larger the ciphertext modulus, leading to higher computational costs. In
addition, according to our test, for the CKKS scheme implemented in SEAL [38], the efficiency ratio between a
ciphertext rotation Rot and a ciphertext multiplication Mul can be as large as 8 : 1. Thus, in practice, one focuses on
optimizing the multiplicative depth and the number of rotations.

3 Bicyclic Encoding for Matrices
In this section, we introduce a novel encoding method for matrices, disclose an intriguing property of this new
encoding for matrix transpose, and present two algorithms for matrix multiplication under this new encoding.

To this end, we fix some notations. Let 𝑨 ∈ R𝑛×𝑚 and 𝑩 ∈ R𝑚×𝑝 be two matrices over some ring R ⊆ C. Denote
by 𝑿 ∈ R𝑛×𝑝 the resulting matrix of their multiplication, i.e., 𝑿 = 𝑨𝑩. The transpose of a matrix 𝑨 is denoted by 𝑨T.
Let [𝑖]𝑘 be the non-negative representation of the residue class of 𝑖 in Z/(𝑘Z). All indices of vectors and matrices
start from 0 unless otherwise specified. For an integer 𝑘 , we define a rotation of a vector 𝒗 = (𝑣𝑖)0≤𝑖<𝑛 ∈ R𝑛 as
𝜌𝑘 (𝒗) = (𝑣 [𝑘]𝑛 , 𝑣 [𝑘+1]𝑛 , . . . , 𝑣 [𝑘+𝑛−1]𝑛) ∈ R𝑛 , i.e., 𝜌𝑘 (𝒗) rotates 𝒗 to the left by [𝑘]𝑛 positions.

3.1 Bicyclic Encoding
Let 𝑨 = (𝑎𝑖 ,𝑗) ∈ R𝑛×𝑚 be a matrix. Define a map 𝜑𝑟 : R𝑛×𝑚 → R𝑟 with a positive integer 𝑟 ≤ 𝑚 · 𝑛 as follows:

𝜑𝑛,𝑚,𝑟 (𝑨) = (𝑎 [0]𝑛 ,[0]𝑚 ,𝑎 [1]𝑛 ,[1]𝑚 , . . . ,𝑎 [𝑟−1]𝑛 ,[𝑟−1]𝑚) ∈ R𝑟 .

In particular, if gcd(𝑛,𝑚) = 1 then the elements of 𝜑𝑛,𝑚,𝑛 ·𝑚 (𝑨) ∈ R𝑛 ·𝑚 exactly traverse each element of 𝑨 once. The
reason is that the indices of the resulting vector are decided by the map 𝑘 ↦→ (𝑘 mod 𝑛,𝑘 mod 𝑚), which is an
isomorphism between Z/(𝑚𝑛Z) and Z/(𝑛Z) ⊗ Z/(𝑚Z) by CRT, provided gcd(𝑛,𝑚) = 1.

We call 𝜑𝑛,𝑚,𝑛 ·𝑚 (𝑨) the bicyclic encoding of 𝑨, denoted by 𝒅 (𝑨). For ℓ ≥ 𝑚 · 𝑛, the bicyclic decoding map
𝜓ℓ ,𝑛,𝑚 : Rℓ → R𝑛×𝑚 that maps a vector 𝒙 ∈ Rℓ to a matrix 𝑿 = (𝑋𝑖 ,𝑗) with 𝑋𝑖 ,𝑗 = 𝑥𝑘 and 𝑘 = [𝑖 · 𝑡 ·𝑚 + 𝑗 · 𝑠 · 𝑛]𝑛·𝑚 ,
where (𝑠 , 𝑡) is a pair of Bézout coefficients for (𝑛,𝑚), i.e., two integers such that 𝑠 · 𝑛 + 𝑡 ·𝑚 = 1. In particular, for the
bicyclic encoding 𝒅 (𝑨) = (𝑑𝑘)0≤𝑘<𝑛 ·𝑚 of a matrix 𝑨 ∈ R𝑛×𝑚 we have𝜓𝑛 ·𝑚,𝑛,𝑚 (𝒅 (𝑨)) = 𝑨.

The following are some remarks on bicyclic encoding:

• In bicyclic encoding, the traversal of row and column indices of 𝑨 ∈ R𝑛×𝑚 forms two different cycles: one
modulo 𝑛 and the other modulo𝑚. This is where the name comes from. In fact, we can easily generalize the
bicyclic encoding to 𝑑-cyclic encoding for 𝑑 multidimensional arrays (tensor) 𝑨 ∈ R𝑛1×···×𝑛𝑑 if 𝑛1, . . . ,𝑛𝑑 are
pairwise coprime, since CRT still holds in this case.

• The bicyclic encoding for matrices can be viewed as an extension of the diagonal vectors [33, Fig. 1-35] employed
in Halevi-Shoup’s algorithm [24]. The primary difference lies in the fact that diagonal vectors are defined for
square matrices, and a 𝑑-dimensional square matrix has 𝑑 diagonal vectors. In contrast, the bicyclic encoding
presented in this paper is effective for matrices with coprime dimensions, and the bicyclic encoding of a matrix
is exactly a single vector.

• For a matrix 𝑨 ∈ R𝑛×𝑚 with (𝑛,𝑚) coprime, the first component of 𝒅 (𝑨) is the (0, 0)-entry of 𝑨, which can
actually be adjusted to start from any entry of 𝑨.

6

3.2 Matrix Multiplication under Bicyclic Encoding
Now we present two algorithms for matrix multiplication under bicyclic encoding.

Algorithm 1
Input: 𝑨 ∈ R𝑛×𝑚 , 𝑩 ∈ R𝑚×𝑝 , (𝑛,𝑚,𝑝) pairwise coprime.
Output: Matrix 𝑿 = 𝑨𝑩.
1. Initialize 𝒂 := 𝒅 (𝑨), 𝒃 := 𝒅 (𝑩), and 𝒙 := 0 ∈ R𝑛 ·𝑝 .

2. Update 𝒂 :=

⌈𝑝/𝑚⌉ times︷ ︸︸ ︷
(𝒂, . . . , 𝒂) and 𝒃 :=

⌈𝑛/𝑚⌉ times︷ ︸︸ ︷
(𝒃 , . . . , 𝒃) .

3. Compute the smallest positive integer 𝑟 satisfying 𝑟 ·𝑚 −𝑛 > 0 and 𝑝 | (𝑟 ·𝑚 −𝑛).
4. For 0 ≤ 𝑖 < 𝑚 do

(a) Set 𝒂
𝑖

:= 𝜌−𝑖 ·𝑛 (𝒂), update 𝒂𝑖 as its first 𝑛𝑝 entries.
(b) Set 𝒃

𝑖
:= 𝜌𝑖 · (𝑟 ·𝑚−𝑛) (𝒃), update 𝒃𝑖 as its first 𝑛𝑝 entries.

(c) Update 𝒙 := 𝒙 + 𝒂
𝑖
⊙ 𝒃

𝑖
.

5. Decode 𝑿 := 𝜓𝑛𝑝 ,𝑛,𝑝 (𝒙).

That we repeat 𝒂 and/or 𝒃 many times in Step 2 is to guarantee that the dimension of 𝒂 and 𝒃 must not be less
than the dimension of the resulting 𝒙 . In Step 4a and 4b, the step size of rotations for 𝒂 and 𝒃 should be in Z/(𝑚𝑛Z)
and Z/(𝑚𝑝Z) respectively; the update of 𝒂

𝑖
and 𝒃

𝑖
can be delayed until Step 4 is complete. In Step 4b, the step size of

rotation for 𝒃 is not 𝑖𝑝 but 𝑖 (𝑟𝑚 −𝑛), where 𝑟𝑚 −𝑛 is a multiple of 𝑝 . This nontrivial condition plays a key role in the
proof of the correctness of Algorithm 1. (See Appendix C.)

Proposition 3. Algorithm 1 is correct. It requires at most 2(𝑚 + log ⌈𝑝/𝑚⌉ + log ⌈𝑛/𝑚⌉ + 1) vector rotations and𝑚
component-wise vector products.

Proof. Since (𝑚,𝑝) are coprime, 𝑛 can be represented as an integral linear combination of𝑚 and 𝑝 , which guarantees
the existence of 𝑟 in Step 3. Now we assume that (𝑠 , 𝑡) is a pair of Bézout coefficients for (𝑛,𝑝). Then according to the
definition of bicyclic decoding, the (𝑖 , 𝑗)-element of 𝑿 is 𝑥𝑘 =

∑
0≤𝑙<𝑚 𝑎𝑙 ,𝑘 · 𝑏𝑙 ,𝑘 , where 𝑥𝑘 , 𝑎𝑙 ,𝑘 and 𝑏

𝑙 ,𝑘 are the 𝑘-th
element of 𝒙 , 𝒂

𝑙
, and 𝒃

𝑙
, respectively, and 𝑘 = [𝑖 · 𝑡 · 𝑝 + 𝑗 · 𝑠 · 𝑛]𝑛𝑝 . Furthermore, we have

𝑥𝑘 =
∑︁

0≤𝑙<𝑚
𝑎
𝑙 ,𝑘 · 𝑏𝑙 ,𝑘

=
∑︁

0≤𝑙<𝑚
𝑎 [𝑘−𝑙 ·𝑛]𝑛 ,[𝑘−𝑙 ·𝑛]𝑚 · 𝑏 [𝑘+𝑙 (𝑟 ·𝑚−𝑛)]𝑚 ,[𝑘+𝑙 (𝑟 ·𝑚−𝑛)]𝑝 (2)

=
∑︁

0≤𝑙<𝑚
𝑎 [𝑘]𝑛 ,[𝑘−𝑙 ·𝑛]𝑚 · 𝑏 [𝑘−𝑙 ·𝑛]𝑚 ,[𝑘+𝑙 (𝑟 ·𝑚−𝑛)]𝑝 (3)

=
∑︁

0≤𝑙<𝑚
𝑎𝑖 ,[𝑘−𝑙 ·𝑛]𝑚 · 𝑏 [𝑘−𝑙 ·𝑛]𝑚 ,𝑗 (4)

=
∑︁

0≤𝑙<𝑚
𝑎𝑖 ,𝑙 · 𝑏𝑙 ,𝑗 . (5)

Eq. (2) follows from the definitions of bicyclic encoding and the rotation operator, and the construction of 𝒂 and
𝒃 in Step 2 of Algorithm 1. Eq. (3) easily follows from the modulo arithmetic. Eq. (4) follows from the fact
that [𝑘]𝑛 = 𝑖 and [𝑘 + 𝑖 (𝑟 ·𝑚 − 𝑛)]𝑝 = 𝑗 . In fact, according to the definition of 𝑘 , there exists an integer 𝑞 such
that 𝑘 = 𝑖 · 𝑡 · 𝑝 + 𝑗 · 𝑠 · 𝑛 + 𝑞 · 𝑛 · 𝑝 . So we have [𝑘]𝑛 = [𝑖 · 𝑡 · 𝑝]𝑛 = 𝑖 because of 𝑠 · 𝑛 + 𝑡 · 𝑝 = 1. Similarly,
[𝑘 + 𝑖 (𝑟 ·𝑚 −𝑛)]𝑝 = [𝑗 · 𝑠 ·𝑛 + 𝑖 (𝑟 ·𝑚 −𝑛)]𝑝 = 𝑗 , where the last equality follows from 𝑠 ·𝑛 + 𝑡 · 𝑝 = 1 and 𝑝 | (𝑟 ·𝑚 −𝑛).
To prove (5), we only need to prove that the set {[𝑘 − 𝑙 · 𝑛]𝑚 : 0 ≤ 𝑙 < 𝑚} forms a complete residue system modulo
𝑚. Assume that it is not the case, i.e., there exist 𝑙 and 𝑙 ′ such that 0 ≤ 𝑙 ′ < 𝑙 < 𝑚 and [𝑘 − 𝑙 · 𝑛]𝑚 ≠ [𝑘 − 𝑙 ′ · 𝑛]𝑚 .
This assumption implies that there exists a nonzero integer 𝑢 such that 𝑘 − 𝑙 · 𝑛 +𝑚 · 𝑢 = 𝑘 − 𝑙 ′ · 𝑛, so we have
(𝑙 − 𝑙 ′)𝑛 =𝑚 ·𝑢. Recalling gcd(𝑛,𝑚) = 1, it gives 𝑛 | 𝑢, i.e., there exists a nonzero integer 𝑣 such that 𝑢 = 𝑛 · 𝑣 . Hence,
(𝑙 − 𝑙 ′) =𝑚 · 𝑣 , which implies |𝑙 − 𝑙 ′ | > 𝑚. This contradicts with 0 ≤ 𝑙 ′ < 𝑙 < 𝑚, which completes the proof.

The for loop of Algorithm 1 requires 2𝑚 − 2 vector rotations and𝑚 vector Hadamard products, and Step 2 requires
at most 2(log ⌈𝑝/𝑚⌉ + log ⌈𝑛/𝑚⌉ + 2) extra vector rotations (see Proposition 8), which completes the proof.

Another algorithm for matrix multiplication under bicyclic encoding We first introduce the following

Definition 4. For 𝒄 = (𝑐𝑖)𝑖 ∈ R𝑛 and an integer 𝑘 that divides 𝑛, the segment-sum of 𝒄 with length 𝑘 is defined as the
vector 𝒔 = (𝑠𝑖)𝑖 ∈ R𝑘 with 𝑠𝑖 =

∑
0≤ 𝑗<𝑛/𝑘 𝑐 𝑗 ·𝑘+𝑖 .

7

Now we propose the second algorithm for matrix multiplication under bicyclic encoding.

Algorithm 2
Input: 𝑨 ∈ R𝑛×𝑚 , 𝑩 ∈ R𝑚×𝑝 , (𝑛,𝑚,𝑝) pairwise coprime.
Output: Matrix 𝑿 = 𝑨𝑩.
1. Initialize 𝒂 := 𝒅 (𝑨), 𝒃 := 𝒅 (𝑩), and 𝒙 := 0 ∈ R𝑛 ·𝑝 .

2. Update 𝒂 :=

𝑝 times︷ ︸︸ ︷
(𝒂, . . . , 𝒂) and 𝒃 :=

𝑛 times︷ ︸︸ ︷
(𝒃 , . . . , 𝒃).

3. Compute 𝒙 := 𝒂 ⊙ 𝒃 .
4. For 𝑖 = ⌈log𝑚⌉ − 1, …, 0 do

(a) Set 𝒕 := 𝜌2𝑖 ·𝑛 ·𝑝 (𝒙).
(b) If 𝑖 = ⌈log𝑚⌉ − 1 then set 𝑡 [𝑚𝑛𝑝−2𝑖 ·𝑛𝑝 ,…,𝑚𝑛𝑝−1] := 0.
(c) Update 𝒙 := 𝒙 + 𝒕 .

5. Decode 𝑿 := 𝜓𝑚𝑛𝑝 ,𝑛,𝑝 (𝒙).

Step 4 is to compute the segment-sum of the vector 𝒙 in Step 3. The results of the segment-sum are located in the
first 𝑛𝑝 position in 𝒙 after Step 4. Here we note that if𝑚 is a power-of-two integer, Step 4b can be omitted.

Proposition 5. Algorithm 2 is correct. It requires at most log ⌈𝑛⌉ + log ⌈𝑚⌉ + log ⌈𝑝⌉ vector rotations and only one
component-wise vector product of dimension𝑚𝑛𝑝 .

Remark 1. From the perspective of matrix multiplication in plaintext, both Algorithm 1 and 2 require 𝑂 (𝑚𝑛𝑝)
arithmetic operations. However, their vectorized calculation style may be employed to accelerate matrix multiplication
on certain heterogeneous platforms, such as FPGA and GPU.

3.3 Encrypted Matrix Operations under Bicyclic Encoding
We now start to discuss some matrix operations on encrypted data under bicyclic encoding, but we defer the encrypted
matrix multiplication to the next section.

Switching between encrypted bicyclic encoding and row encoding The first operation is how to convert
between the bicyclic encoding and the commonly used row encoding or column encoding. Here, we only discuss the
row encoding, since the discussion for the column encoding can be obtained similarly. For a matrix𝑨 = (𝑎𝑖 ,𝑗) ∈ R𝑛×𝑚
with (𝑛,𝑚) coprime, the row encoding of 𝑨 is defined as a vector 𝒓 (𝑨) = (𝑎⌊𝑘 ′/𝑚⌋,[𝑘 ′]𝑚)0≤𝑘 ′<𝑚𝑛 . Suppose that 𝒅 (𝑨)
is the bicyclic encoding of 𝑨. Then there exists a linear transformation 𝑻 between 𝒓 (𝑨) and 𝒅 (𝑨). In particular,
𝒅 (𝑨) = 𝑻 · 𝒓 (𝑨), where 𝑡𝑘 ,𝑘 ′ = 1 with 𝑘 and 𝑘 ′ determined as follows. For 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑚, we first decide
𝑘 ′ = 𝑖 ·𝑚 + 𝑗 , and then compute 𝑘 = [𝑖 · 𝑡 ·𝑚 + 𝑗 · 𝑠 · 𝑛]𝑚𝑛 , where (𝑠 , 𝑡) is a pair of Bézout coefficients for (𝑛,𝑚), as in
the bicyclic decoding process. One can decide a matrix 𝑻 ′ satisfying 𝒓 (𝑨) = 𝑻 ′ · 𝒅 (𝑨) similarly.

Given an encryption of 𝒓 (𝑨), we can use the diagonal encoding introduced by Halevi-Shoup to perform linear
transformations on ciphertexts [24], thereby accomplishing the conversion between the two encodings. Assuming
the matrix 𝑻 has 𝑑 non-zero diagonal vectors, this transformation can be computed within 𝑑 CMuls and 2

√
𝑑 Rots,

and requires only one level of CMul multiplication depth [31].

Encrypted matrix transpose under bicyclic encoding Under bicyclic encoding, we show that one can transpose
a matrix for free, either in plaintext or encrypted form.

Proposition 6. For a matrix 𝑨 ∈ R𝑛×𝑚 with gcd(𝑛,𝑚) = 1, we have 𝒅 (𝑨) = 𝒅 (𝑨T).
Corollary 7. Let (ct.𝒂𝑖)0≤𝑖<⌈𝑚𝑛

ℓ
⌉ be ciphertexts (under an FHE scheme that supports ℓ slots) of the bicyclic encoding of a

matrix 𝑨 ∈ R𝑛×𝑚 with gcd(𝑛,𝑚) = 1. Then (ct.𝒂𝑖)0≤𝑖<⌈𝑚𝑛
ℓ
⌉ are also ciphertexts of the bicyclic encoding of 𝑨T.

4 Encrypted Matrix Multiplication under Bicyclic Encoding
In this section, we always assume that (𝑛,𝑚,𝑝) are coprime, which means bicyclic encoding applies to all matrices 𝑨,
𝑩 and 𝑿 = 𝑨𝑩, denoted by 𝒂, 𝒃 , and 𝒙 the encoded vectors, respectively. We also assume that all the encoded vectors
can be encrypted into a single ciphertext, denoted by ct.𝒂, ct.𝒃 , and ct.𝒙 , respectively.

4.1 Building Blocks
For convenience, we first present two building blocks. We refer to the supplemental material for the detailed
description.

8

The Repeat Operation According to Step 2 of Algorithm 1, we need first to convert a ciphertext ct.𝒂 of 𝒂 to a
ciphertext of (𝒂, . . . , 𝒂), i.e., repeated with certain times.

Algorithm 3 (Repeat)

Input: A ciphertext ct.𝒂 of (𝒂, 0) ∈ Rℓ (where 𝒂 ∈ R𝑑) and an integer 𝑡 =
∑⌊log 𝑡 ⌋

𝑖=0 𝑡𝑖 · 2𝑖 ≥ 1 satisfying 𝑡𝑑 < ℓ .
Output: A updated ciphertext ct.𝒄 that encrypts (𝒂, . . . , 𝒂, 0) ∈ Rℓ with 𝒂 repeated 𝑡 times.
1. Initialize ct.𝒂0 ← ct.𝒂.
2. For 1 ≤ 𝑖 ≤ ⌊log 𝑡⌋ do

(a) Compute ct.𝒂𝑖 ← Add(ct.𝒂𝑖−1,Rot−2𝑖−1𝑑 (ct.𝒂𝑖−1)).
3. Set 𝑘 = 2⌊log 𝑡 ⌋ · 𝑑 and ct.𝒄 := ct.𝒂⌊log 𝑡 ⌋ .
4. For 𝑖 = ⌊log 𝑡⌋ − 1, ⌊log 𝑡⌋ − 2, . . . , 1, 0 do

(a) If 𝑡𝑖 ≠ 0 then compute ct.𝒄 ← Add(ct.𝒄 ,Rot−𝑘 (ct.𝒂𝑖)) and update 𝑘 := 𝑘 + 𝑡𝑖 · 2𝑖 · 𝑑 .

Proposition 8. The Repeat algorithm is correct and requires at most 2 log 𝑡 Rots and Adds, respectively. In particular, if
𝑡 is a power-of-two integer, it only requires log 𝑡 such operations.

The Segsum Operation In Step 4 of Algorithm 2, we need to compute the segment-sum of a vector 𝒂 = (𝑎𝑖)𝑖 ∈ R𝑛
with length 𝑘 satisfying 𝑛 = 𝑘 ·𝑚 for an integer𝑚. The following algorithm is an encrypted form of this process.

Algorithm 4 (Segsum)
Input: A ciphertext ct.𝒂 of (𝒂, 0) ∈ Rℓ (where 𝒂 ∈ R𝑛) and an integer 𝑘 satisfying 𝑛 = 𝑘 ·𝑚 for an integer𝑚.
Output: A ciphertext ct.𝒄 that encrypts (𝒄 , 0) ∈ Rℓ , where 𝒄 ∈ R𝑘 is the segment-sum of 𝒂 with length 𝑘 .
1. Initialize ct.𝒄 ← ct.𝒂 and𝑚 := 𝑛/𝑘 .
2. For 𝑖 = ⌈log𝑚⌉ − 1, ⌈log𝑚⌉ − 2, . . . , 1, 0 do

(a) Set ct.𝒕 := Rot2𝑖 ·𝑘 (ct.𝒄)
(b) If 𝑖 = ⌈log𝑚⌉ − 1 then ct.𝒕 ← Sl[0,𝑛−2𝑖−1] (ct.𝒕). /∗ This can be omitted if𝑚 is a power-of-two integer. ∗/
(c) Update ct.𝒄 ← Add(ct.𝒄 , ct.𝒕).

Proposition 9. The Segsum algorithm is correct and requires at most ⌈log𝑚⌉ Rots and Adds, and oneCMul. In particular,
if𝑚 is a power-of-two integer, it only requires log𝑚 Rots and Adds, without CMul.

4.2 Encrypted Version of Algorithm 1
We now propose an encrypted version (Algorithm 5) of Algorithm 1 for encrypted matrix multiplication on packed
ciphertexts under bicyclic encoding.

Algorithm 5
Input: ct.𝒂 and ct.𝒃 , which are ciphertexts of the bicyclic encoding of matrices𝑨 ∈ R𝑛×𝑚 and 𝑩 ∈ R𝑚×𝑝 , respectively,

where (𝑛,𝑚,𝑝) are coprime and the number of slots ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝}.
Output: ct.𝒙 , whose first 𝑛 · 𝑝 slots correspond to the bicyclic encoding of the resulting matrix 𝑿 ∈ R𝑛×𝑝 .
1. Initialize ct.𝒙 ← Enc(0). Compute the smallest positive integer 𝑟 satisfying 𝑝 | (𝑟 ·𝑚 −𝑛) and 𝑟 ·𝑚 −𝑛 > 0.
2. Update ct.𝒂 ← Repeat(ct.𝒂, 2 ⌈𝑝/𝑚⌉) and ct.𝒃 ← Repeat(ct.𝒃 , 2 ⌈𝑛/𝑚⌉).
3. For 0 ≤ 𝑖 < 𝑚 do

(a) Compute ct.𝒂
𝑖
← Rot[−𝑖 ·𝑛]𝑚𝑛

(ct.𝒂).
(b) Compute ct.𝒃

𝑖
← Rot[𝑖 · (𝑟 ·𝑚−𝑛)]𝑚𝑝

(ct.𝒃).
(c) Update ct.𝒙 ← Add(ct.𝒙 ,Mul(ct.𝒂

𝑖
, ct.𝒃

𝑖
)).

In comparison to the plaintext algorithm (Algorithm 1), the most significant difference lies in Step 2, where the
number of repetitions for vectors 𝒂 and 𝒃 is doubled. This directly leads to the requirement of ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝}.
The reason is that Rot operations are indeed performed on vectors of dimension ℓ . In contrast, in the plaintext
algorithm, the rotation operations for 𝒂 (resp. 𝒃) are performed on a vector of dimension𝑚𝑛 (resp.𝑚𝑝). Thus, we
have to double the number of repetitions of the original vectors to guarantee the correctness of the results.

Another difference lies in the for loop: neither ct.𝒂
𝑖
nor ct.𝒃

𝑖
is truncated to keep only the first 𝑛𝑝 elements. Even

after the for loop, ct.𝒙 is still not truncated to contain only the first 𝑛𝑝 elements. In fact, if we denote the ℓ-dimensional
vector 𝒙 by the decryption of ct.𝒙 returned by Algorithm 5, then the first 𝑛𝑝 components of 𝒙 exactly correspond
to the bicyclic encoding of the result matrix 𝑿 = 𝑨𝑩. Hence, the truncation can be delayed until decryption. This
property implies that Algorithm 5 does not need any plaintext-ciphertext multiplication CMul.

9

Proof of Theorem 1 item 1. Under the assumptions on 𝑛,𝑚,𝑝 and ℓ , bicyclic encoding is available for each matrix, and
each bicyclic encoding vector can be encrypted in one ciphertext. Further, the assumption ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝}
guarantees the correctness of Rots in Step 3a and 3b. Thus, Algorithm 5 exactly follows the plaintext Algorithm 1,
which implies the correctness. The cost of Algorithm 5 is shown in Table 3, which directly follows from the cost of
Repeat and counting.

Table 3: The cost of Algorithm 5

Cost Step 2 Step 3 Total

#Add 2(log
⌈ 𝑝
𝑚

⌉
+ log

⌈
𝑛
𝑚

⌉
+ 2) 𝑚 𝑚 + 2(log

⌈ 𝑝
𝑚

⌉
+ log

⌈
𝑛
𝑚

⌉
+ 2)

#CMul 0 0 0
#Mul 0 𝑚 𝑚

#Rot 2(log
⌈ 𝑝
𝑚

⌉
+ log

⌈
𝑛
𝑚

⌉
+ 2) 2𝑚 − 2 2(𝑚 + log

⌈ 𝑝
𝑚

⌉
+ log

⌈
𝑛
𝑚

⌉
+ 1)

#Mult. depth 0 1 Mul 1Mul

Remark 2. Although Algorithm 5 does not use plaintext-ciphertext multiplication CMul, users should know that the
computation results are contained only in the first 𝑛𝑝 slots. Suppose that decrypting the ct.𝒙 obtains 𝒙 ∈ Rℓ . Then
running bicyclic decoding𝜓ℓ ,𝑛,𝑝 (𝒙) gives the resulting matrix 𝑿 = 𝑨𝑩. If necessary, these results can be extracted
through a single Sl[0,𝑛𝑝−1] (ct.𝒙) operation. In fact, performing this selection remains unnecessary unless there is a
need to utilize the latter ℓ −𝑛𝑝 slots.

Comparison with existing algorithms Compared with algorithms designed specifically for square matrices
[41, 31, 30, 44], Algorithm 5 offers greater flexibility in matrix dimensions. Despite the pairwise coprime constraints
among (𝑛,𝑚,𝑝), one can use padding with zeros to meet the requirements. Generally, Algorithm 5 needs fewer
padding positions. Compared with algorithms that support encrypted matrix multiplication of arbitrary dimensions
[13, 28], as well as those facilitating encrypted approximate number matrix operations [35, 41, 31, 30, 44], Algorithm
5 requires the fewest number of multiplication depths and ciphertext rotations. While the algorithm in [44] requires
a smaller number of ciphertext-ciphertext multiplications (Mul), our algorithm does not need plaintext-ciphertext
multiplication (CMul); see Table 1.

However, the condition ℓ > 2 ·max{𝑚𝑛,𝑚𝑝 ,𝑛𝑝} in Algorithm 5 constrains the dimensions of matrices. For
a set of CKKS parameters with ℓ = 212, Jiang et al.’s algorithm [31] supports encrypted matrix multiplication of
dimensions (64, 64, 64), whereas Algorithm 5 only supports dimensions of (43, 45, 44), which is about

√︁
ℓ/2. (Note

that the algorithm in [44] only supports (16, 16, 16), i.e., 3√
ℓ , encrypted matrix multiplication under the same setting.)

However, experimental results in Section 7 show that Algorithm 5 is still practical.

4.3 Encrypted Version of Algorithm 2
Similarly, we propose an encrypted version of Algorithm 2 as Algorithm 6. We note that the discussion in Remark 2
also holds for Algorithm 6.

Algorithm 6
Input: ct.𝒂 and ct.𝒃 , which are ciphertexts of the bicyclic encoding of matrices𝑨 ∈ R𝑛×𝑚 and 𝑩 ∈ R𝑚×𝑝 , respectively,

where (𝑛,𝑚,𝑝) are pairwise coprime and the number of slots ℓ > 𝑛 ·𝑚 · 𝑝 .
Output: ct.𝒙 , whose first 𝑛 · 𝑝 slots correspond to the bicyclic encoding of the resulting matrix 𝑿 = 𝑨𝑩 ∈ R𝑛×𝑝 .

1. Initialize ct.𝒙 ← Enc(0).

2. Set ct.𝒂 ← Repeat(ct.𝒂,𝑝), ct.𝒃 ← Repeat(ct.𝒂,𝑛).

3. Compute ct.𝒙 ← Mul(ct.𝒂, ct.𝒃).

4. ct.𝒙 ← Segsum(ct.𝒙 ,𝑛𝑝)

Proof of Theorem 1 item 2. In comparison to Algorithm 2 in plaintext, all steps of Algorithm 6 are essentially the same.
Therefore, the item 2 of Theorem 1 follows from Proposition 5, which also completes the proof of Theorem 1.

10

Comparison with existing algorithms Similar to Algorithm 6, both the Rizomiliotis-Triakosia (RT) algorithm [44]
and Zheng et al.’s algorithm [55] have a restriction of 𝑑 = 𝑂 (3√

𝑁), where 𝑑 = max(𝑛,𝑚,𝑝) and 𝑁 is the dimension of
the ring used in the encryption algorithm. Compared to the RT algorithm, the number of Rots required by Algorithm
6 is reduced from a linear function in 𝑑 to a logarithmic function. Compared to Zheng et al.’s algorithm, the cost of 6
is considerable; theoretically, Algorithm 6 and Zheng et al.’s algorithm are the two most cost-effective algorithms.
However, because Zheng et al.’s algorithm relies on the tensor structure of the ring, it currently only supports the
BGV scheme, while Algorithm 6 can support any homomorphic encryption scheme that supports SIMD, including
BGV, B/FV, CKKS.

However, we note that when computing high-dimensional matrix multiplication in a block-wise manner, these
algorithms require more blocks than the other algorithms listed in Table 1, which makes them not so practical as
shown in Section 7. Next, we will discuss how to circumvent this obstacle to support encrypted matrix multiplication
with higher dimensions.

5 Encrypted Matrices of High Dimensions
Assume that the matrix multiplication with dimensions (𝑛,𝑚,𝑝) satisfies the condition that max(𝑚𝑛,𝑚𝑝 ,𝑛𝑝) > ℓ .
This implies that at least one matrix involved in the multiplication (either 𝑨, 𝑩, or 𝑿) requires multiple ciphertexts
for storage. Under this setting, traditional methods typically resort to block matrix multiplication. Besides, there
exists another natural approach, called segmented strategy for handling high-dimensional encrypted matrices, in
which any bicyclic encoding vector of matrices with dimension larger than ℓ may be divided into multiple vectors of
dimension ℓ .

5.1 Block Matrix Multiplication
Let 𝑨 ∈ R𝑛×𝑚 and 𝑩 ∈ R𝑚×𝑝 be the two matrices to be multiplied. Assume that the number of slots ℓ supports a
(𝑛0,𝑚0,𝑝0) matrix multiplication for packed ciphertexts with𝑚0 = max{𝑛0,𝑚0,𝑝0}. For simplicity, we further assume
that 𝑛1 = 𝑛/𝑛0 =𝑚/𝑚0 = 𝑝/𝑝0. Then both 𝑨 and 𝑩 can be split into 𝑛1 ×𝑛1 blocks. To compute this (𝑛1,𝑛1,𝑛1) block
matrix multiplication, one needs to compute 𝑛𝜔1 matrix multiplications of dimension (𝑛0,𝑚0,𝑝0) with 2 < 𝜔 < 3, e.g.,
for Strassen algorithm [47], 𝜔 = log 7 ≈ 2.81. We call the resulting algorithm the block version of Algorithm 5, which
requires𝑚0𝑛

𝜔
1 Muls and 2(𝑚0 + 1)𝑛𝜔1 Rots. In fact, the block strategy applies to all matrix multiplication algorithms.

In Table 4, we summarize the cost of some of them, such as [31, 44, 55]. Note that 𝑛0 = 𝑚0 = 𝑝0 =
√
ℓ for [31] and

𝑛0 =𝑚0 = 𝑝0 =
3√
ℓ for [44].

Table 4: The cost of different block algorithms for high dimensional (𝑛,𝑚,𝑝)
encrypted matrix multiplication with 𝑑 = max{𝑛,𝑚,𝑝}.

Method #Mul #CMul #Rot Mult. depth
Block [31] ℓ

1−𝜔
2 𝑑𝜔 5ℓ 1−𝜔

2 𝑑𝜔 (3ℓ 1−𝜔
2 + 5ℓ 1

2 (
1
2 −𝜔))𝑑𝜔 1Mul + 2CMul

Block [44] ℓ−
𝜔
3 𝑑𝜔 2ℓ

1−𝜔
3 𝑑𝜔 (2ℓ 1−𝜔

3 + ℓ− 1
3𝜔 log ℓ)𝑑𝜔 1Mul + 1CMul

Block [55]† 𝑛𝜔1 2𝑛𝜔1 2 log𝑁 · 𝑛𝜔1 1Mul + 1CMul
Block Algo. 5 𝑚0𝑛

𝜔
1 0 2(𝑚0 + 1)𝑛𝜔1 1Mul

Block Algo. 6‡ 𝑛𝜔1 0 3 log𝑚0 · 𝑛𝜔1 1Mul

† 𝑁 is the ring dimension of the BGV scheme.
‡𝑚0 is a power-of-two integer.

It appears that the block version of Algorithm 6 and Zheng et al.’s algorithm [55] are faster than the others in
Table 4. However, as mentioned previously, these two algorithms have to deal with more blocks. In particular, 𝑛1 for
these two algorithms is approximately 𝑑/ℓ1/3, while for the others 𝑛1 is about 𝑑/ℓ1/2, where 𝑑 = max(𝑛,𝑚,𝑝).

For the block version of Algorithm 5, if we assume that 𝑛0 ≈ 𝑚0 ≈ 𝑝0 ≈
√︁
ℓ/2 and 𝑑 = max{𝑛,𝑚,𝑝}, then

#Mul ≤ (ℓ/2) 1−𝜔2 𝑑𝜔 , and #Rot ≤ 2(ℓ/2) (1−𝜔)/2𝑑𝜔 , which seems worse than that of algorithms in [31, 44]. However,
the advantages of the block version of Algorithm 5 include: it requires only one multiplicative depth, and it needs no
CMul. Experiments in Section 7.4 show that the block version of Algorithm 5 performs well in practice.

5.2 Segmented Matrix Multiplication
The bicyclic encoding introduced in Section 3 allows us to segment the bicyclic encoding vector of matrices, thereby
supporting high-dimensional encrypted matrix multiplication following Algorithm 1 exactly. To facilitate this,
it is necessary to introduce a fundamental operation called LongRot, used to rotate the segmented vectors of a
high-dimensional vector.

11

The LongRot algorithm Given 𝒂 ∈ R𝑑 with 𝑑 > ℓ , the LongRot operation implements the following functionality:

• Construct 𝒂 = (𝒂, . . . , 𝒂) ∈ R𝑡 ·𝑑 , repeating 𝑡 times of 𝒂;

• Rotate the vector 𝒂 to the left by 𝑘 positions, resulting in 𝒂′ = 𝜌𝑘 (𝒂);

• Select the first 𝜏 elements of 𝒂′ and divide them into
⌈
𝜏
ℓ

⌉
groups, each containing ℓ elements, possibly zero-

padding for the last one.

Clearly, this functionality is designed to construct the ciphertexts of 𝒂
𝑖
and 𝒃

𝑖
from the ciphertexts of 𝒂 and 𝒃 in Step

2 of Algorithm 1, respectively. We omit the detailed description here since this involves only some tedious control
structures. For further details, we refer to Appendix B.

Proposition 10. The LongRot algorithm correctly computes the above functionality within
⌈
𝜏
ℓ

⌉
Rots, 2

⌈
𝜏
ℓ

⌉
+ 𝜏

𝑑
+ 1

CMuls, and one CMul multiplicative depth.

Algorithm 7 (LongRot)
Input: Ciphertexts (ct.𝒂𝑖)0≤𝑖<𝑤 for 𝒂 = (𝒂0, 𝒂1, . . . , 𝒂𝑤−2, 𝒂𝑤−1) ∈ R𝑑 with 𝒂𝑤−1 ∈ R𝑧 and 𝒂𝑖 ∈ Rℓ for 𝑖 = 0, 1, . . . ,𝑤 −

2 (i.e., 𝑑 = (𝑤 − 1)ℓ + 𝑧 with 0 ≤ 𝑧 < ℓ , where ℓ is the number of slots), the number of repeated times 𝑡 , the
number of positions to be rotated 𝑘 ∈ [0,𝑑), the number of selected elements 𝜏 .

Output: Ciphertexts (ct.𝒂′
𝑖
)0≤𝑖<⌈ 𝜏ℓ ⌉ , i.e.,

⌈
𝜏
ℓ

⌉
ciphertexts corresponding to the first 𝜏 elements of 𝒂′.

Segmented version of Algorithm 5 Now, we present an algorithm (Algorithm 8) for high-dimensional encrypted
matrix multiplication under bicyclic encoding. It is essentially a direct translation of Algorithm 1 into its encrypted
version. The only difference lies in Step 3a, where the rotation step size is adjusted from − 𝑗𝑛 to (𝑚 − 𝑗)𝑛. These two
are evidently equivalent and meet the requirement of non-negative step sizes in Algorithm 7.

Algorithm 8
Input: Ciphertexts (ct.𝒂𝑖)𝑖<⌈𝑚𝑛/ℓ ⌉ for the bicyclic encoding of 𝑨 ∈ R𝑛×𝑚 and ciphertexts (ct.𝒃𝑖)𝑖<⌈𝑚𝑝/ℓ ⌉ for the

bicyclic encoding of 𝑩 ∈ R𝑚×𝑝 , where (𝑛,𝑚,𝑝) are pairwise coprime.
Output: Ciphertexts (ct.𝒙𝑖)0≤𝑖<⌈𝑛𝑝/ℓ ⌉ for the bicyclic encoding of the resulting matrix 𝑿 ∈ R𝑛×𝑝 .
1. For 𝑖 = 0, 1, . . . , ⌈𝑛𝑝/ℓ⌉ − 1 initialize ct.𝒙𝑖 ← Enc(0).
2. Compute the smallest positive integer 𝑟 such that 𝑝 | (𝑟 ·𝑚 −𝑛) and 𝑟 ·𝑚 −𝑛 > 0.
3. For 𝑗 = 0, 1, . . . ,𝑚 − 1 do the following:

(a) (ct.𝒂′
𝑖
)𝑖 ← LongRot((ct.𝒂

𝑖
)0≤𝑖<⌈𝑚𝑛

ℓ ⌉ ,
⌈ 𝑝
𝑚

⌉
, (𝑚 − 𝑗)𝑛,𝑛𝑝).

(b) (ct.𝒃′
𝑖
)𝑖 ← LongRot((ct.𝒃

𝑖
)0≤𝑖<⌈𝑚𝑝

ℓ ⌉ ,
⌈
𝑛
𝑚

⌉
, 𝑗 (𝑟𝑚 −𝑛),𝑛𝑝).

(c) Compute ct.𝒙𝑖 ← Add(ct.𝒙𝑖 ,Mul(ct.𝒂′
𝑖
, ct.𝒃′

𝑖
)) for 𝑖 = 0, 1, . . . , ⌈𝑛𝑝/ℓ⌉ − 1.

Proof of Theorem 2. From the structure of Algorithm 8, it is easy to see that the required multiplicative depth is
one Mul and one CMul. It follows from Proposition 10 that Step 3a and 3b requires at most 2

⌈𝑛𝑝
ℓ

⌉
+ 𝑝

𝑚
+ 1 and

2
⌈𝑛𝑝

ℓ

⌉
+ 𝑛

𝑚
+ 1 CMuls, respectively, and both costs at most

⌈𝑛𝑝
ℓ

⌉
Rots. Therefore, totally, it requires at most 2𝑚 ·

⌈𝑛𝑝
ℓ

⌉
Rots and (4 ·

⌈𝑛𝑝
ℓ

⌉
+ 2)𝑚 + 𝑛 + 𝑝 CMuls. Step 3c costs

⌈𝑛𝑝
ℓ

⌉
Muls. Thus, the total number of Muls is bounded by

𝑚 ·
⌈𝑛𝑝

ℓ

⌉
.

Table 5: The cost of Algorithm 8 for high-dimensional rectangular matrix multi-
plication

Size Method #Mul #CMul #Rot Mult. depth

(𝑛,𝑛, ℓ/𝑛) [29] 𝑛 5𝑛 3𝑛 + 𝑛2

ℓ
+ 𝑛
√
𝑛√
ℓ
− 1 1 Mul + 2 CMul

Algo. 8† 𝑛 7𝑛 + ℓ
𝑛

2𝑛 1Mul + 1 CMul

(𝑛, ℓ/𝑛, ℓ/𝑛) [29] ℓ
𝑛

5ℓ
𝑛

3ℓ
𝑛
+ 6
√
ℓ

𝑛
√
𝑛
+ 2ℓ

𝑛2 − 2 1Mul + 2 CMul

Algo. 8† ℓ
𝑛

7ℓ
𝑛
+𝑛 2ℓ

𝑛
1Mul + 1 CMul

(ℓ/𝑛,𝑛, ℓ/𝑛) [29] ℓ
𝑛

5ℓ
𝑛

3ℓ
𝑛
+ 6
√
ℓ

𝑛
√
𝑛
+ ℓ

𝑛2 − 1 1Mul + 2 CMul

Algo. 8† ℓ
𝑛

6ℓ
𝑛
+ 2𝑛 2ℓ

𝑛
1Mul + 1 CMul

† For Algorithm 8, we should make the dimensions pairwise coprime.

12

Comparison For square encrypted matrix multiplication with dimension 𝑑 , Algorithm 8 requires 𝑂 (𝑑3) ciphertext
operations. Therefore, in an asymptotic sense, the number of ciphertext operations required by Algorithm 5 is greater
than those required by the block version algorithms in Section 5.1. However, experiments in Section 7 demonstrate
that when 𝑑 ≤ 1024, Algorithm 8 has a distinct advantage over those block version algorithms. The reason is that most
of the block version algorithms are originally recursive. It is well known that the efficiency of recursive algorithms
is not that fast. Usually, one can rewrite a recursive algorithm as a loop algorithm. However, in the case of matrix
multiplication over encrypted data, such a rewriting will lead to the required multiplicative depth increasing regarding
the depth of the recursion, which is unacceptable.

Additionally, Algorithm 8 supports encrypted matrix multiplication of flexible dimensions. In literature, Huang et
al. [29] investigated encrypted matrix multiplication for high-dimensional rectangular matrices with different shapes,
including matrix multiplication of dimensions (𝑛,𝑛, ℓ/𝑛), (𝑛, ℓ/𝑛, ℓ/𝑛), and (ℓ/𝑛,𝑛, ℓ/𝑛), where ℓ is the number of
slots. All of these shapes cost similar ciphertext operations. Compared with theirs in Table 5 shows that Algorithm 8
reduces the number of Rots by a factor 1

3 and saves one CMul depth, at a cost of a bit more CMuls.

6 Another Application of Segmented Strategy
In this section, we consider applying the segmented strategy to the algorithm by Lu et al. [35], which is not under
bicyclic encoding. This algorithm is no longer the best for matrix multiplication with smaller dimensions, as shown in
Table 3. However, combining several optimizations and observations, the segmented version of Lu et al.’s algorithm
(Algorithm 10) requires the fewest number of ciphertext rotations in theory among all currently known encrypted
matrix multiplication algorithms for high-dimensional matrices.

6.1 Lu et al.’s Algorithm
The algorithm in [35] for encrypted matrix multiplication relies on the Replicate operation. The function of
Replicate𝑖 (ct.𝒂) is to transform a ciphertext of 𝒂 = (𝑎0, . . . ,𝑎ℓ−1) into a ciphertext of (𝑎𝑖 ,𝑎𝑖 , . . . ,𝑎𝑖). A Replicate can
be finished within one CMul plus log ℓ Rots and Adds. Lu et al.’s algorithm supports matrix multiplication of any
dimension. For computing an (𝑛,𝑚,𝑝) matrix multiplication 𝑿 = 𝑨𝑩 in encrypted form, the algorithm encodes all
matrices row by row.

When max(𝑚,𝑝) < ℓ , the number of ciphertexts in Algorithm 9 corresponding to 𝑨, 𝑩 and 𝑿 are 𝑛,𝑚 and 𝑛,
respectively. It requires𝑚𝑛 Muls and CMuls, and𝑚𝑛 log𝑝 Rots.

Note that only log ℓ key-switching keys are enough for Algorithm 9, which is used to replicate each entry of 𝑨. In
addition, since the matrices are encoded by rows, Algorithm 9 naturally supports the segmented method introduced
in Section 5.2.

Algorithm 9 (Lu et al.’s algorithm [35])
Input: Ciphertexts (ct.𝒂𝑖)0≤𝑖<𝑛 for rows of 𝑨 ∈ R𝑛×𝑚 and ciphertexts (ct.𝒃𝑖)0≤𝑖<𝑚 for rows of 𝑩 ∈ R𝑚×𝑝 .
Output: Ciphertexts (ct.𝒙𝑖)0≤𝑖<𝑛 for rows of the resulting matrix 𝑿 ∈ R𝑛×𝑝 .
1. For 𝑖 = 0 to 𝑛 − 1 do

(a) For 𝑗 = 0 to𝑚 − 1 do
i. ct.𝒙𝑖 = Add(ct.𝒙𝑖 ,Mul(Replicate𝑗 (ct.𝒂 𝑗), ct.𝒃 𝑗)).

2. Return (ct.𝒙𝑖)0≤𝑖<𝑛 .

6.2 Segmented Lu et al.’s Algorithm
Now we consider matrix multiplication of high dimensions, where each row of 𝑨 or 𝑩 is encoded and encrypted as
multiple ciphertexts in a segmented manner, say, min(𝑚,𝑝) > ℓ .

The number of ciphertexts corresponding to 𝑨, 𝑩 and 𝑿 are 𝑛⌈𝑚
ℓ
⌉,𝑚⌈𝑝

ℓ
⌉ and 𝑛⌈𝑝

ℓ
⌉, respectively. Further, this

algorithm requires𝑚𝑛⌈𝑝
ℓ
⌉ Muls and CMuls, and𝑚𝑛 log𝑝 Rots. However, we can optimize the algorithm further.

Algorithm 10 (Segmented version of Lu et al.’s algorithm)
Input: Ciphertexts (ct.𝒂𝑖 ,𝑗)0≤𝑖<𝑛,0≤ 𝑗<⌈𝑚/ℓ ⌉ for𝑨 ∈ R𝑛×𝑚 and ciphertexts (ct.𝒃𝑖 ,𝑗)0≤𝑖<𝑚,0≤ 𝑗<⌈𝑝/ℓ ⌉ for 𝑩 ∈ R𝑚×𝑝 , where

ct.𝒂𝑖 ,𝑗 is the ciphertext corresponding to the 𝑗-th segment of the 𝑖-th row of 𝒂, similar for ct.𝒃𝑖 ,𝑗 .
Output: Ciphertexts (ct.𝒙𝑖 ,𝑗)0≤𝑖<𝑛,0≤ 𝑗<⌈𝑝/ℓ ⌉ for the resulting matrix 𝑿 ∈ R𝑛×𝑝 .
1. For 𝑖 = 0 to 𝑛 − 1 do

(a) For 𝑗 = 0 to ⌈𝑝/ℓ⌉ − 1 do
i. For 𝑘 = 0 to ⌈𝑚/ℓ⌉ do

A. For 𝜄 = 0 to ℓ − 1 compute ct.𝒙𝑖 ,𝑗 ← Add(ct.𝒙𝑖 ,𝑗 ,Mul(Replicate𝜄 (ct.𝒂𝑖 ,𝑘), ct.𝒃𝑘ℓ+𝜄,𝑗)).
2. Return (ct.𝒙𝑖 ,𝑗)0≤𝑖<𝑛,0≤ 𝑗<⌈𝑝/ℓ ⌉ .

13

On encoding (O1) Since the cost of Algorithm 10 heavily relies on a factor 𝑛𝑚, when 𝑛𝑚 ≫𝑚𝑝 , it is costly. If this
is the case, we can encode the matrix by columns, or, equivalently, consider the matrix multiplication in transpose
𝑿T = 𝑩T𝑨T. So, one can always assume that 𝑛 ≤ 𝑝 .

On the number of ciphertexts (O2) For matrix 𝑨 ∈ R𝑛×𝑚 , since it only involves the Replicate operation, it can be
encoded and encrypted into fewer ciphertexts without affecting efficiency. Indeed, it can be encrypted in a row-wise
manner into ⌈𝑛𝑚

ℓ
⌉ ciphertexts. For instance, if𝑚𝑛 < ℓ , this reduces the number of ciphertexts for 𝑨 from 𝑛 to 1.

On the number of Rots (O3) For multiplying with the ciphertexts of each row of 𝑩, one must replicate each
element of 𝑨 to a vector of dimension 𝑝 theoretically. However, all segments are the same. So it does not need
𝑚𝑛 log𝑝 Rots, but only needs𝑚𝑛 log ℓ Rots. This observation shows that the required Rots is independent of 𝑝 .

On Replicate the same ciphertext (O4) In Algorithm 10, we need to replicate 𝒂 = (𝑎0, . . . ,𝑎𝑚−1) ∈ R𝑚 to
(𝑎𝑖 ,𝑎𝑖 , . . . ,𝑎𝑖) ∈ Rℓ for 𝑖 = 0, . . . ,𝑚 − 1. This costs𝑚 log ℓ Rots and𝑚 CMuls. However, to obtain the same results,
one may first group 𝒂 into groups with each group𝜅 elements and repeat each group ℓ/𝜅 times. Then, for each repeated
ciphertext, replicate the 𝜅 elements. For instance, assume that our goal is to obtain ciphertexts of (𝑖 , . . . , 𝑖) ∈ R16 from
𝒂 = (1, 2, 3, 4) ∈ R4 for 𝑖 = 1, 2, 3, 4. First, we select (1, 2) ∈ R2 and repeat it 8 times to obtain (1, 2, . . . , 1, 2), which
costs 1 CMuls and log(ℓ/𝜅) = 3 Rots. Then we can obtain (1, 0, . . . , 1, 0) and (0, 2, . . . , 0, 2) by 2 CMuls. Then we can
obtain (1, . . . , 1) and (2, . . . , 2) by 2 Rots. With this optimization, we can reduce the number of Rots from 16 to 10, at
a cost of𝑚/𝜅 more CMuls and one more CMul depth. So, to replicate all elements of 𝑨, the required Rots and CMuls
are bounded by 𝑛𝑚

(
log(ℓ/𝜅)

𝜅
+ log𝜅

)
and 𝑛𝑚(1 + 1/𝜅) respectively. The minimum number of Rots achieves when 𝜅

satisfies 𝜅e𝜅−1 = ℓ .

Table 6: The cost of segmented algorithms for high dimensional encrypted (𝑛,𝑚,𝑝)
matrix multiplication with 𝑛 ≤ 𝑝 .

Method #Mul #CMul #Rot #Mult. depth

Algo. 8 𝑚
⌈𝑛𝑝

ℓ

⌉
4𝑚

⌈𝑛𝑝
ℓ

⌉
+ 2(𝑛 + 𝑝 + 2𝑚) 2𝑚

⌈𝑛𝑝
ℓ

⌉
1Mul + 1 CMul

Algo. 10/O3 𝑚𝑛
⌈𝑝
ℓ

⌉
𝑚𝑛 𝑚𝑛 log ℓ 1Mul + 1CMul

Algo. 10/O4 𝑚𝑛
⌈𝑝
ℓ

⌉
𝑛𝑚(1 + 1

𝜅
) 𝑛𝑚(log

ℓ
𝜅

𝜅
+ log𝜅) 1Mul + 2CMul

Summary We summarize in Table 6 the segmented algorithms. If
⌈𝑛𝑝

ℓ

⌉
is small, say a constant, the efficiency of

Algorithm 8 is relevant since the required number of operations is only linear in𝑚. In the case of 𝑛,𝑚 ≪ 𝑝 , the
advantage of Algorithm 10 is evident, as the required number of Rots and CMuls is independent of 𝑝 . Furthermore,
we also note that the number of Rots required by Algorithm 10 is even less than that of the state-of-the-art algorithm
[55], which needs ℓ−

2
3𝑑2 log𝑑 Rots with 𝑑 = max{𝑛,𝑚,𝑝}, asymptotically more than log ℓ · 𝑑2 (Algorithm 10/O3)

when 𝑑 tends to infinity.

7 Implementation and Evaluation
In this section, we first introduce our implementation with more details, followed by a comprehensive experimental
study of the involved algorithms to evaluate their performance.

7.1 Implementation
To evaluate the performance of the algorithms introduced in this paper, we implement them all (Algorithm 5, 6, 8,
10) and the algorithms of [31, 44] by using the CKKS scheme [12] implemented in Microsoft’s open-source SEAL
[38]. We also implement the naïve (textbook) and Strassen block version of the algorithms in [31], Algorithm 5, and
Algorithm 6.

In SEAL, the key-switching keys for Rot𝑘 are generated only for 𝑘 = 2𝑖 by default. When a Rot𝑘 operation is
involved for a non-power-of-two 𝑘 , the task can be accomplished using consecutive rotations, e.g., Rot3 (ct.𝒙) =
Rot1 (Rot2 (ct.𝒙)). This is the main reason for the time-consuming nature of Rot. For efficiency, we pre-generate all
the necessary switching keys in our implementation. Although this needs additional time and storage overhead for
key generation, according to our test with Algorithm 8 for 𝑁 = 8192, it saves about 15% of computing time. Once
these keys are generated, they can be reused in subsequent operations.

There are many fast algorithms for matrix multiplication in plain, e.g., [47, 3]. Almost all of these algorithms
are recursive. It is well known that a recursive program can always be rewritten as an iterative loop. However, in

14

the context of ciphertext computation, such as encrypted Strassen’s matrix computation, the multiplication depth
of the rewritten version may depend on the recursion depth, which will slow down the algorithm significantly. In
contrast, the original recursive algorithm might only require a single Mul depth (possibly plus one or two CMul
depths), although it is memory-consuming and hard to optimize further.

7.2 Setup
All experiments are run on a single thread (no parallelization) of a Dell XPS Desktop 8950 with an Intel Core i9-12900K
at 3.2 GHz. We evaluate encrypted matrix multiplication algorithms with different dimensions:

• Small (almost) square dimension: all matrices 𝑨, 𝑩 and 𝑿 can be packed into one ciphertext. This setting is to
evaluate Algorithm 5, 6, and algorithms in [31, 44].

• Large (almost) square dimension: all matrices 𝑨, 𝑩 and 𝑿 have to be packed into several ciphertexts. This
setting is to evaluate Algorithm 8, together with the block version of Jiang et al.’s algorithm [31] and Algorithm
5.

• Rectangular dimension: Some of 𝑨, 𝑩 and 𝑿 are rectangular. This setting is to compare the performance of
Algorithm 8, 10 and the state-of-the-art algorithm [29].

Recall that the ciphertext of CKKS is Z[𝑋]/⟨𝑋𝑁 + 1,𝑞⟩, and there is a scale factor Δ in CKKS related to the precision
of the computed results. In our tests, all matrix entries are set by pow(−1, i + j) ∗ rand()/pow(2, 30), roughly in
the interval (−2, 2). The degree of ciphertext space and ciphertext modulus may vary depending on algorithms. In
particular, we always set the bit-size of 𝑞 as 50 + 𝐿 · logΔ + 60, where 𝐿 is the number of multiplicative depth (Mul
and CMul) required by the corresponding algorithm (see, e.g., Table 1).

Such a setting always achieves at least 128-bit security level according to the ongoing homomorphic encryption
security standard [1] and the latest lattice estimator [2]. We also note that multiple test runs show that in this setup,
the maximal absolute errors of the computed results are always less than 10−2.

7.3 Matrices with Small Dimension
For CKKS-based encrypted matrix multiplication with small dimension (each of the matrices 𝑨, 𝑩 and 𝑿 = 𝑨𝑩 can be
encoded and encrypted into a single ciphertext), we compare Algorithm 5 and 6 with the algorithms in [31] and [44].

When𝑁 = 8192, the Rizomiliotis-Triakosia (RT) algorithm [44] supports square matrix multiplication of dimension
3
√︁
𝑁 /2 = 16. As indicated in Table 7, Algorithm 5 achieves a 1.5x speedup under the same parameter settings as the

RT algorithm. However, due to the lower multiplicative depth required by Algorithm 5, it can finish the computation
with a smaller ciphertext modulus. Under this setting, compared with the RT algorithm, Algorithm 5 eventually
achieves a 2.4x speedup. In the same parameter setting, Algorithm 6 supports a (15, 16, 17) matrix multiplication,
which performs the best among these algorithms, achieving a 16.6x speedup. When 𝑁 = 16384 or 𝑁 = 32768, the RT
algorithm does not have corresponding matrix multiplication, whereas both Algorithm 5 and 6 have. More precisely,
the RT algorithm can support matrix multiplication of other dimensions at a cost of more ciphertext operations. The
reason is that the rotation operation Rot is designed for vectors of dimension ℓ . If the dimension is not exact ℓ , then
one Rot can be finished with two Rots, two CMuls and one Add. The same reason holds for Jiang et al.’s algorithm
when 𝑁 = 16384 in Table 8.

Table 7: Performance comparison with the RT algorithm for small-
dimensional matrices. 𝑁 = 8192 and logΔ = 30.

Method log𝑞 Dimension Time (ms) Speedup

RT [44] 170 (16, 16, 16) 199 1.0x
Algo. 5 170 (16, 19, 17) 130 1.5x
Algo. 5 140 (16, 19, 17) 82 2.4x
Algo. 6 140 (15, 16, 17) 13 16.6x

We test three different 𝑁 in Table 8. For the same 𝑁 , Algorithm 5 demonstrates a clear advantage (achieving a
4.4x speedup at least) compared with Jiang et al.’s algorithm [31], though the matrix dimensions it supports are only
about

√︁
1/2 ≈ 70% of that supported by Jiang et al.’s algorithm.

In fact, the matrix dimension supported by all these algorithms are constrained by the number of plaintext
slots ℓ . For instance, for 𝑁 = 8192 (ℓ = 4096), the algorithm in [31] can support square matrix multiplication of
dimension

√
ℓ = 64, the algorithm in [44] is limited to 3√

ℓ = 16, and Algorithm 5 (resp. Algoirthm 6) can support
matrix multiplication of dimensions (43, 45, 44) (resp. (15, 16, 17)). However, the dimensions supported by Algorithm
5 and 6 are quite flexible. For example, when 𝑁 = 16384, Algorithm 5 can support matrix multiplication of dimensions

15

Table 8: Performance comparison with [31] for matrices with small dimension, where logΔ = 30. “–”
indicates that the algorithm does not support matrix multiplication for the corresponding dimensions.

Method log𝑞 𝑁 = 8192 𝑁 = 16384 𝑁 = 32768
Dim. Time (ms) Dim. Time (ms) Dim. Time (ms)

[31] 200 (64, 64, 64) 1453 – – (128, 128, 128) 13526
Algo. 5 140 (43, 45, 44) 284 (61, 64, 63) 1003 (89, 91, 90) 3059
Algo. 6 140 (15, 16, 17) 13 (21, 16, 23) 31 (31, 16, 33) 48

(61, 64, 63) or others, say (29, 128, 31) with a runtime of 1940 ms when log𝑞 = 140, while the other two algorithms do
not support square matrix multiplication under this parameter setting.

Comparison with the algorithm in [55]

Since we did not implement our algorithms for the BGV scheme, we cannot directly compare the performance with
Zheng et al.’s algorithm [55]. As analyzed previously, the performance of Algorithm 6 should be a bit better than that
of theirs. In particular, according to [55, Table 2], it is reported that their algorithm costs 1 Mul, 2 CMuls and 14 Rots
for a (16, 16, 16) matrix multiplication (their implementation costs about 119ms on our desktop for the first example
given in [55, Tab. 3]), while Algorithm 6 requires only 1Mul and 13 Rots for a (15, 16, 17) matrix multiplication in
Table 8.

7.4 Large Square Matrix Multiplication
To evaluate the performance of algorithms for square matrices of high dimensions, we assume a scenario involving
matrix multiplications with dimensions of 128, 256, 512 and 1024, respectively. For these tasks, we test different
algorithms, including the naïve and Strassen version of block matrix multiplication, and the segmented Algorithm 8;
see Tables 9–11 for details. Since it follows from Table 7 that the algorithm in [44] is not comparable with Algorithm
5, we here only consider the Jiang et al.’s algorithm [31], Algorithm 5, and Algorithm 6 as the base algorithms for the
block version.

Table 9: Performance comparison for (128, 128, 128) matrix multiplication. logΔ = 30
except for Algo. 8 with logΔ = 40.

Method log𝑞 𝑁 = 8192 𝑁 = 32768
Basic block Time (s) Basic block Time (s)

Naïve block [31] 200 (64, 64, 64) 11.34 (128, 128, 128) 14.17
Strassen + [31] 200 (64, 64, 64) 10.34 (128, 128, 128) 14.17

Naïve block Algo. 5 140 (43, 45, 44) 7.59 (86, 89, 87) 13.32
Strassen + Algo. 5 140 (32, 35, 33) 8.31 (64, 67, 65) 11.99
Naïve block Algo. 6 140 (15, 16, 17) 4.40 (21, 32, 23) 8.32
Strassen + Algo. 6 140 (11, 8, 9) 84.89 (17, 16, 19)8 127.69

Algo. 8 190 (128, 131, 129) 11.05 (128, 131, 129) 41.60

In Table 9-11, we only list the dimensions of the involved basic block, from which, together with the input
dimensions, the number of blocks can be easily determined. From Table 9, it is evident that for (128, 128, 128) matrix
multiplication, the most efficient is Algorithm 6 using the naïve block method, while surprisingly, the Strassen version
of Algorithm 6 is the worst. In fact, this is consistent with the previous analysis, as although the basic version of
Algorithm 6 is theoretically the best among these algorithms, it supports the smallest matrix dimensions, resulting in
more blocks and thus affecting the performance. Therefore, we will not consider the Strassen version of Algorithm 6
for further tests.

As indicated in Table 10, compared with the naïve block version, the Strassen block version does provide a speedup.
In addition, the Strassen block version of Algorithm 5 is more efficient than that of Jiang et al.’s. However, it should
be noted that the Strassen block version of Algorithm 5 requires more ciphertexts. For instance, when 𝑁 = 8192, the
Strassen block version of Algorithm 5 needs 64 ciphertexts to store a matrix, while the Strassen block version of Jiang
et al.’s algorithm requires only 16. Table 10 also shows that the segmented Algorithm 8 with 𝑁 = 8192 outperforms all
block algorithms, each matrix stored in 17 ciphertexts due to the coprime limitation of the dimensions. For example, it
can finish a (256, 259, 257) encrypted matrix multiplication within 42.90 seconds (2x faster than naïve block algorithm
in [31]), of which 15.80 seconds are spent generating the switching keys required for Rot. Indeed, once these keys

16

Table 10: Performance comparison for (256, 256, 256)matrixmultiplication. logΔ = 30
except for Algo. 8 with logΔ = 40.

Method log𝑞 𝑁 = 8192 𝑁 = 32768
Basic block Time (s) Basic block Time (s)

Naïve block [31] 200 (64, 64, 64) 89.33 (128, 128, 128) 112.01
Strassen + [31] 200 (64, 64, 64) 71.54 (128, 128, 128) 97.90

Naïve block Algo. 5 140 (43, 45, 44) 59.57 (86, 89, 87) 73.35
Strassen + Algo. 5 140 (32, 35, 33) 56.98 (64, 67, 65) 80.99
Naïve block Algo. 6 140 (15, 16, 17) 76.60 (21, 32, 23) 76.19

Algo. 8 190 (256, 259, 257) 42.90† (256, 259, 257) 110.99
†We pre-generate the key-switching keys. Otherwise, it takes about 50s.

are generated, they can be reused, hence possibly further improving the efficiency for subsequent computations in
practical applications.

Table 11: Performance comparison for matrix multiplication of dimension 512 and 1024
with 𝑁 = 8192.

Method log𝑞 (512, 512, 512) (1024, 1024, 1024)
Basic block Time (s) Basic block Time (s)

Naïve block [31] 200 (64, 64, 64) 728 (64, 64, 64) 6028
Strassen + [31] 200 (64, 64, 64) 479 (64, 64, 64) 3514

Naïve block Algo. 5 140 (43, 45, 44) 490 (43, 45, 44) 4240
Strassen + Algo. 5 140 (32, 35, 33) 390 (32, 35, 33) 2757†
Naïve block Algo. 6 140 (15, 16, 17) 1766 (15, 16, 17) –

Algo. 8 190 (512, 515, 513) 181† (1024, 1027, 1025) 1200†

† By default, logΔ = 30 except for these with logΔ = 40.

Based on observations derived from Table 9 and 10, the setting 𝑁 = 8192 performs better than 𝑁 = 32768 for
all tested algorithms. Thus, in tests with dimensions of 512 and 1024, we fix 𝑁 = 8192. From Table 11, the naïve
block Algorithm 6 perform the worst, since, again, more blocks slow down the speed. In addition, we have a similar
observation to that from Table 10, indicating that Algorithm 8 has the best performance among these algorithms.
Specifically, for the task of (1024, 1024, 1024) encrypted matrix multiplication, Algorithm 8 is 5x faster than the naïve
block version Jiang et al.’s algorithm [31]. By the way, We also test the performance of the naïve block Algorithm 8,
which costs about 260s for the (512, 512, 512) case with the basic block as (256, 259, 257).

7.5 Rectangular Matrix Multiplication
Huang et al. in [29] investigated high-dimensional encrypted rectangular matrix multiplication for different shapes.
As indicated in Table 12, for the different dimensions in [29], as the dimensions increase, the efficiency of Algorithm 8
gradually outperforms that of Huang et al.’s algorithm, with a 2.6x speedup at most. Furthermore, Algorithm 8 can be
used to cases of even larger dimension. For instance, it can finish a (8191, 8192, 15) encrypted matrix multiplication
within 1452.16 seconds, while Huang et al.’s algorithm in its current setup does not support this instance.

Table 12: Performance comparison for rectangular matrix multiplication (I).

Huang et al.’s algorithm [29]† Algorithm 8‡
Dimension Time (s) Dimension KeyGen (s) Total (s) Speedup

(256, 256, 16) 6.19 (256, 257, 17) 16.15 23.60
(256, 16, 256) 6.23 (256, 17, 257) 14.69 19.37
(1024, 1024, 16) 108.22 (1024, 1025, 17) 14.68 55.79 1.9x
(1024, 16, 1024) 108.31 (1024, 17, 1025) 14.47 43.64 2.4x
(2048, 2048, 8) 218.09 (2048, 2049, 11) 14.49 98.01 2.2x
(2048, 8, 2048) 218.09 (2049, 8, 2051) 14.63 81.09 2.6x
† For Huang et al.’s algorithm, 𝑁 is set as the same as theirs and logΔ = 30.
‡ For Algo. 8, 𝑁 = 8192 and logΔ = 40.

Tables 13 and 14 include two additional cases of rectangular encrypted matrix multiplication not discussed in [29].

17

In the first case (Table 13), matrix 𝑨 is short and wide, while matrix 𝑩 is tall and narrow, i.e., 𝑛,𝑝 ≪𝑚. The naïve
block version of Algorithm 5 exhibits the best performance, about 4x faster than the corresponding version of Jiang
et al.’s algorithm. Note that Algorithm 8 is a bit faster than the naïve block version of Jiang et al.’s, but slower than
that of Algorithm 5. So, we omit its performance here. Note that the naïve block Algorithm 6 applies to the tests in
Table 13. It costs 0.20, 1.52, 23.02, and 513.07 seconds, respectively.

Table 13: Performance (in sec.) for rectangular matrix multiplication
(II). 𝑁 = 8192, logΔ = 30.

Dimension Naïve block [31] Naïve block Algo. 5 Speedup

(4, 1636, 5) 36.92 9.76 3.7x
(8, 3405, 9) 78.58 19.92 3.9x
(16, 6903, 17) 157.00 38.57 4.0x
(32, 13847, 33) 317.31 76.73 4.1x

In Table 14, we report experimental results for another case, i.e., 𝑛 ≈𝑚 ≪ 𝑝 and𝑚𝑛 < ℓ (for this case Algorithm
7 and hence Algorithm 8 do not work), for which Algorithm 10 demonstrates the best performance. This is because
the dimensions (𝑛,𝑚) of the matrix 𝑨 are relatively small, and the number of Rots and CMuls required by Algorithm
10 are independent of the number of columns 𝑝 of the matrix 𝑩 (as already indicated in Section 6.2). We implement
all optimizations in Section 6.2. Experiments show that Algorithm 10 with O4 is about 3x faster than that without O4.
Thus, we only list the performance of Algorithm 10 with O4 in Table 14. It follows from Table 14 that the naïve block
version of Algorithm 5 is significantly faster than the naïve block version of Jiang et al.’s, but slower than Algorithm
10 with O4 (in Table 6 𝜅 = 8 is fixed for ℓ = 4096). In particular, for the case of (32, 33, 13847), Algorithm 10 with O4
is about 38x faster than the naïve block version of [31].

Table 14: Performance (in sec.) for rectangular matrix multiplication (III).
𝑁 = 8192, logΔ = 30.

Dimension Naïve block [31] Naïve block Algo. 5 Algo. 10+O4

(4, 5, 1636) 36.31 0.10 0.25
(8, 9, 3405) 77.56 0.65 0.63
(16, 17, 6903) 157.32 4.96 2.23
(32, 33, 13847) 316.76 38.82 8.24

8 Conclusion
In this paper, we introduce bicyclic encoding, a novel method for matrix encoding. We design several new algorithms
for encrypted matrix multiplication under bicyclic encoding, and investigate the block and segmented methods for
handling high-dimensional matrices. In the context of CKKS, the following conclusions can be drawn from our
theoretical analysis and comprehensive experimental study:

• For encrypted matrix multiplication of small dimensions, Algorithm 5 or 6 is the optimal choice;

• When dealing with larger-scale encrypted square matrix multiplication, although theoretically, variants based
on the Strassen block-wise strategy are faster, the practical performance is better with the segmented strategy
(Algorithm 8);

• For those types of rectangular encrypted matrix multiplication discussed in [29], Algorithm 8 shows better
performance;

• For rectangular encrypted matrix multiplication with 𝑛 ≈ 𝑝 ≪𝑚, the naïve block Algorithm 5 is effective;

• For rectangular encrypted matrix multiplication with 𝑛 ≈ 𝑚 ≪ 𝑝 , Algorithm 10 that combines Lu et al.’s
algorithm [35] with the segmented strategy demonstrates exceptional performance.

From the perspective of practical application, the implementations in this paper can still be further optimized.
For example, employing a multi-thread parallelization can yield additional acceleration; for block algorithms, the
intermediate results after rotations can be reused, and hence further acceleration may be achieved; the hoisting and
double-hoisting technique (e.g., [8]) may be used to accelerate our implementation further as well.

18

Furthermore, implementing these algorithms using BGV or B/FV schemes would significantly enhance integer
matrix multiplication on encrypted data. Additionally, exploring other matrix operations beyond transpose and
multiplication under bicyclic encoding are worth further investigation.

Finally, the error analysis for matrix multiplication on encrypted data is another intriguing direction, which is
closely related to choosing parameters, e.g., the scale factor Δ for CKKS, or the plaintext modulus for BGV and B/FV.

Acknowledgments
We thank Zhicong Huang for sharing with us, together with Cheng Hong, Chenkai Weng, and Wen-jie Lu, their codes
for [29]. We also thank Dr. Xiaopeng Zheng for the helpful discussion on the multiplicative depth of the encrypted
Strassen algorithm.

Code availability
For reproducibility of these results, our codes will be open-sourced after publication and an executable file is currently
available upon request.

References
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey

Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Homomorphic encryption security standard. Technical report, Homomorphi-
cEncryption.org, Toronto, Canada, November 2018. http://homomorphicencryption.org/wp-content/uploads/
2018/11/HomomorphicEncryptionStandardv1.1.pdf. 15

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203, 2015. https://doi.org/10.1515/jmc-2015-0016. Lattice Estimator: https:
//github.com/malb/lattice-estimator. 15

[3] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (January 10 – 13, 2021,
Virtually), pages 522–539. SIAM, Philadelphia, 2021. https://doi.org/10.1137/1.9781611976465.32. 14

[4] Mikhail Babenko, Elena Golimblevskaia, Andrei Tchernykh, Egor Shiriaev, Tatiana Ermakova, Luis Bernardo
Pulido-Gaytan, Georgii Valuev, Arutyun Avetisyan, and Lana A. Gagloeva. A comparative study of secure
outsourced matrix multiplication based on homomorphic encryption. Big Data and Cognitive Computing, 7(2),
2023. https://doi.org/10.3390/bdcc7020084. 2

[5] Yanan Bai, Xiaoyu Shi, Wenyuan Wu, Jingwei Chen, and Yong Feng. seIMC: A GSW-based secure and efficient
integer matrix computation scheme with implementation. IEEE Access, 8(1):98383–98394, 2020. https://doi.org/
10.1109/ACCESS.2020.299600010.1109/ACCESS.2020.2996000. 2

[6] Shashank Balla and Farinaz Koushanfar. HELiKs: HE linear algebra kernels for secure inference. In Weizhi Meng,
Christian D. Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (November 26 - 30, 2023, Copenhagen, Denmark), pages 2306–2320. ACM,
New York, 2023. https://doi.org/10.1145/3576915.3623136. 2

[7] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and Hossein Yalame. MP2ML: A mixed-
protocol machine learning framework for private inference. In Melanie Volkamer and Christian Wressnegger,
editors, Proceedings of the 15th International Conference on Availability, Reliability and Security (Virtual Event,
Ireland, August 25 - 28, 2020), pages 14:1–10. ACM, New York, 2020. https://doi.org/10.1145/3407023.3407045. 1

[8] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021 (Zagreb, Croatia, October
17–21, 2021), volume 12696 of Lecture Notes in Computer Science, pages 587–617. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-77870-5_21. 3, 18

[9] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – Proc CRYPTO 2012 (August 19–23, 2012, Santa
Barbara, CA, USA), volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer, Heidelberg, 2012.
http://doi.org/10.1007/978-3-642-32009-5_50. 1, 23

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory, 6(3):13:1–13:36, 2014. https://doi.org/10.1145/2633600.
1, 23

19

http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
https://doi.org/10.1515/jmc-2015-0016
https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.3390/bdcc7020084
https://doi.org/10.1109/ACCESS.2020.2996000
https://doi.org/10.1109/ACCESS.2020.2996000
https://doi.org/10.1145/3576915.3623136
https://doi.org/10.1145/3407023.3407045
https://doi.org/10.1007/978-3-030-77870-5_21
http://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600

[11] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and Sameer Wagh. Maliciously secure
matrix multiplication with applications to private deep learning. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020 (Daejeon, South Korea, December 7–11, 2020), volume 12493 of Lecture
Notes in Computer Science, pages 31–59. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-64840-4_2. 2

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In T. Takagi and T. Peyrin, editors, Proceedings of ASIACRYPT 2017 – 23rd International
Conference on the Theory and Applications of Cryptology and Information Security (December 3-7, 2017, Hong
Kong, China), Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437. Springer, Heidelberg,
2017. https://doi.org/10.1007/978-3-319-70694-8_15. 1, 2, 5, 14, 23

[13] John Chiang. Volley revolver: A novel matrix-encoding method for privacy-preserving neural networks
(inference). arXiv preprint arXiv:2201.12577, 2022. https://doi.org/10.48550/arXiv.2201.12577. 2, 3, 10

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020. https://doi.org/10.1007/s00145-019-09319-x.
1, 23

[15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - Proceedings of EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Part I (April 26-30,
2015, Sofia, Bulgaria), volume 9056 of Lecture Notes in Computer Science, pages 617–640. Springer, Heidelberg,
2015. https://doi.org/10.1007/978-3-662-46800-5_24. 1, 23

[16] Jean-Guillaume Dumas, Pascal Lafourcade, Julio Lopez Fenner, David Lucas, Jean-Baptiste Orfila, Clément
Pernet, and Maxime Puys. Secure multiparty matrix multiplication based on Strassen-Winograd algorithm. In
Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in Information and Computer Security – Proceedings
of the 14th International Workshop on Security (Tokyo, Japan, August 28–30, 2019), volume 11689 of Lecture Notes
in Computer Science, pages 67–88. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-26834-3_5. 2

[17] Dung Hoang Duong, Pradeep Kumar Mishra, and Masaya Yasuda. Efficient secure matrix multiplication
over LWE-based homomorphic encryption. Tatra Mountains Mathematical Publications, 67(1):69–83, 2016.
https://doi.org/10.1515/tmmp-2016-0031. 2

[18] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive https://eprint.iacr.org/2012/144, 2012. 1, 23

[19] Geoffrey C. Fox, SteveW. Otto, and Anthony J. G. Hey. Matrix algorithms on a hypercube I: Matrix multiplication.
Parallel computing, 4(1):17–31, 1987. https://doi.org/10.1016/0167-8191(87)90060-3. 2

[20] Shaojing Fu, Yunpeng Yu, and Ming Xu. A secure algorithm for outsourcing matrix multiplication computation
in the cloud. In CongWang and Murat Kantarcioglu, editors, Proceedings of the Fifth ACM International Workshop
on Security in Cloud Computing (Abu Dhabi, United Arab Emirates, 2 April, 2017), pages 27–33. ACM, New York,
2017. https://doi.org/10.1145/3055259.3055263. 2

[21] Tan Soo Fun and Azman Samsudin. A survey of homomorphic encryption for outsourced big data computation.
KSII Transactions on Internet and Information Systems, 10(8):3826–3851, 2016. https://doi.org/10.3837/tiis.2016.08.
022. 1

[22] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, Proceedings
of the forty-first annual ACM symposium on Theory of computing (May 31 - June 2, 2009, Bethesda, USA), pages
169–178. ACM, New York, 2009. https://doi.org/10.1145/1536414.1536440. 1, 23

[23] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptolog–
Proc CRYPTO 2013 (August 18-22, 2013, Santa Barbara, CA, USA), Part I, volume 8042 of Lecture Notes in Computer
Science, pages 75–92. Springer, Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40041-4_5. 2

[24] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014 (Santa Barbara, USA, August 17-21, 2014), volume 8616 of Lecture Notes in Computer
Science, pages 554–571. Springer, Heidelberg, 2014. https://doi.org/10.1007/978-3-662-44371-2_31. 2, 4, 6, 8

[25] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – Proc EUROCRYPT 2015 (April 26–30, 2015, Sofia, Bulgaria), Part I, volume 9056 of Lecture Notes in
Computer Science, pages 641–670. Springer, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-46800-5_25. 1, 2,
3

[26] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages and optimizing bootstrapping in
GSW-FHE. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences,
99(1):73–82, 2016. https://doi.org/10.1587/transfun.E99.A.73. 2

[27] Jifa Hu, Fuqun Wang, and Kefei Chen. Faster matrix approximate homomorphic encryption. Computer Standards
& Interfaces, 87:103775, 2024. https://doi.org/10.1016/j.csi.2023.103775. 3

[28] Hai Huang and Haoran Zong. Secure matrix multiplication based on fully homomorphic encryption. The Journal
of Supercomputing, 79(5):5064–5085, 2023. https://doi.org/10.1007/s11227-022-04850-4. 2, 3, 10

20

https://doi.org/10.1007/978-3-030-64840-4_2
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.48550/arXiv.2201.12577
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-030-26834-3_5
https://doi.org/10.1515/tmmp-2016-0031
https://eprint.iacr.org/2012/144
https://doi.org/10.1016/0167-8191(87)90060-3
https://doi.org/10.1145/3055259.3055263
https://doi.org/10.3837/tiis.2016.08.022
https://doi.org/10.3837/tiis.2016.08.022
https://doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1587/transfun.E99.A.73
https://doi.org/10.1016/j.csi.2023.103775
https://doi.org/10.1007/s11227-022-04850-4

[29] Zhicong Huang, Cheng Hong, Chenkai Weng, Wen-jie Lu, and Hunter Qu. More efficient secure matrix
multiplication for unbalanced recommender systems. IEEE Transactions on Dependable and Secure Computing,
20(1):551–562, 2023. https://doi.org/10.1109/TDSC.2021.3139318. 1, 3, 4, 5, 12, 13, 15, 17, 18, 19, 27

[30] Jaehee Jang, Younho Lee, Andrey Kim, Byunggook Na, Donggeon Yhee, Byounghan Lee, Jung Hee Cheon, and
Sungroh Yoon. Privacy-preserving deep sequential model with matrix homomorphic encryption. In Yuji Suga,
Kouichi Sakurai, , Xuhua Ding, and Kazue Sako, editors, Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security (Nagasaki, Japan, 30 May 2022- 3 June 2022), page 377–391. ACM, New
York, 2022. https://doi.org/10.1145/3488932.3523253. 2, 3, 10

[31] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix computation and
application to neural networks. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (October 15–19, 2018,
Toronto, Canada), pages 1209–1222. ACM, New York, 2018. https://doi.org/10.1145/3243734.3243837. 2, 3, 4, 5, 8,
10, 11, 14, 15, 16, 17, 18

[32] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, and Donghoon Yoo.
General bootstrapping approach for RLWE-based homomorphic encryption. IEEE Transactions on Computers,
pages 1–13, 2023. https://doi.org/10.1109/TC.2023.3318405. 1

[33] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann Publishers, San
Mateo, 1992. 6

[34] Feng-Hao Liu and Han Wang. Batch bootstrapping I: A new framework for SIMD bootstrapping in polynomial
modulus. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023 (Lyon, France,
April 23-27, 2023), volume 14006 of Lecture Notes in Computer Science, pages 321–352. Springer, Cham, 2023.
https://doi.org/10.1007/978-3-031-30620-4_11. 1, 2

[35] Wen-jie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomorphic encryption for statistical analysis of
categorical, ordinal and numerical data. In NDSS 2017: 24th Annual Network and Distributed System Security
Symposium (San Diego, USA, February 26–March 1, 2017). The Internet Society, 2017. https://doi.org/10.14722/
ndss.2017.23119. 2, 4, 5, 10, 13, 18

[36] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings.
Journal of ACM, 60(6):43:1–35, 2013. https://doi.org/10.1145/2535925. 23

[37] Xirong Ma, Chuan Ma, Yali Jiang, and Chunpeng Ge. Improved privacy-preserving PCA using optimized
homomorphic matrix multiplication. Computers & Security, 138:103658, 2024. https://doi.org/10.1016/j.cose.2023.
103658. 3

[38] Microsoft. Microsoft SEAL (release 4.1.1), Accessed in July, 2023. https://github.com/microsoft/SEAL. 1, 4, 5, 6,
14

[39] Pradeep Kumar Mishra, Dung Hoang Duong, and Masaya Yasuda. Enhancement for secure multiple matrix
multiplications over ring-LWE homomorphic encryption. In Joseph K. Liu and Pierangela Samarati, editors,
Information Security Practice and Experience (Melbourne, Australia, December 13–15, 2017), volume 10701 of Lecture
Notes in Computer Science, pages 320–330. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-72359-4_18.
2

[40] Luis Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M. Cortés-Mendoza, Mikhail Babenko, and Gleb Rad-
chenko. A survey on privacy-preserving machine learning with fully homomorphic encryption. In Sergio
Nesmachnow, Harold Castro, and Andrei Tchernykh, editors, High Performance Computing – Proceedings of
CARLA 2020: Latin American High Performance Computing Conference (Cuenca, Ecuador, September 2–4, 2020),
volume 1327 of Communications in Computer and Information Science, pages 115–129. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-68035-0_9. 1

[41] Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda. Faster PCA and linear regression through
hypercubes in HElib. In David Lie, Mohammad Mannan, and Aaron Johnson, editors,WPES’18: Proceedings of
the 2018 Workshop on Privacy in the Electronic Society (Toronto, Canada, 15 October 2018), pages 42–53. ACM,
New York, 2018. https://doi.org/10.1145/3267323.3268952. 2, 3, 10

[42] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of ACM,
56(6):34:1–40, 2009. https://doi.org/10.1145/1568318.1568324. 23

[43] Ronald Rivest, Leonard Adleman, and Michael Dertouzos. On data banks and privacy homomorphisms. In
Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure
Computation, pages 165–179. Academic Press, Atlanta, 1978. 1, 23

[44] Panagiotis Rizomiliotis and Aikaterini Triakosia. On matrix multiplication with homomorphic encryption. In
Francesco Regazzoni and Marten van Dijk, editors, Proceedings of the 2022 on Cloud Computing Security Workshop
(Los Angeles, USA), pages 53–61. ACM, New York, 2022. https://doi.org/10.1145/3560810.3564267. 2, 3, 4, 10, 11,
14, 15, 16

[45] Dilek Öner Şimşek and Murat Cenk. Faster secure matrix multiplication with the BGV algorithm. In A. A. Selçuk,
Ş. Sağiroğlu, Y. Oğuz, and C. Tezcan, editors, Proceedings of the 16th International Conference on Information

21

https://doi.org/10.1109/TDSC.2021.3139318
https://doi.org/10.1145/3488932.3523253
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1109/TC.2023.3318405
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.14722/ndss.2017.23119
https://doi.org/10.14722/ndss.2017.23119
https://doi.org/10.1145/2535925
https://doi.org/10.1016/j.cose.2023.103658
https://doi.org/10.1016/j.cose.2023.103658
https://github.com/microsoft/SEAL
https://doi.org/10.1007/978-3-319-72359-4_18
https://doi.org/10.1007/978-3-030-68035-0_9
https://doi.org/10.1145/3267323.3268952
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/3560810.3564267

Security and Cryptology (October 18-19, 2023, Ankara, Turkey), pages 1–5. IEEE, Danvers, 2023. https://doi.org/10.
1109/ISCTrkiye61151.2023.10336104. 3

[46] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and Cryptography,
71(1):57–81, 2014. https://doi.org/10.1007/s10623-012-9720-4. 1

[47] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356, 1969. https:
//doi.org/10.1007/BF02165411. 2, 3, 4, 11, 14

[48] Xiaoqiang Sun, F. Richard Yu, Peng Zhang, Weixin Xie, and Xiang Peng. A survey on secure computation
based on homomorphic encryption in vehicular ad hoc networks. Sensors, 20(15):4253:1–31, 2020. https:
//doi.org/10.3390/s20154253. 1

[49] Shufang Wang and Hai Huang. Secure outsourced computation of multiple matrix multiplication based on
fully homomorphic encryption. KSII Transactions on Internet and Information Systems, 13(11):5616–5630, 2019.
https://doi.org/10.3837/tiis.2019.11.019. 2

[50] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. Homomorphic encryption for machine learning in
medicine and bioinformatics. Journal of ACM Computing Surveys, 53(4):70:1–35, 2020. https://doi.org/10.1145/
3394658. 1

[51] Binwu Xiang, Jiang Zhang, Yi Deng, Yiran Dai, and Dengguo Feng. Fast blind rotation for bootstrapping FHEs.
In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023 (Santa Barbara,
USA, August 20–24, 2023), volume 14084 of LNCS, pages 3–36. Springer, Cham, 2023. https://doi.org/10.1007/
978-3-031-38551-3_1. 1

[52] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi Koshiba. New packing
method in somewhat homomorphic encryption and its applications. Security and Communication Networks,
8(13):2194–2213, 2015. https://doi.org/10.1002/sec.1164. 2

[53] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi Koshiba. Secure statistical
analysis using RLWE-based homomorphic encryption. In Ernest Foo and Douglas Stebila, editors, Information
Security and Privacy – ACISP 2015 (Brisbane, Australia, June 29 – July 1, 2015), volume 9144 of Lecture Notes in
Computer Science, pages 471–487. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19962-7_27. 2

[54] Liang Zhao and Liqun Chen. Sparse matrix masking-based non-interactive verifiable (outsourced) computation,
revisited. IEEE Transactions on Dependable and Secure Computing, 17(6):1188–1206, 2020. https://doi.org/10.1109/
TDSC.2018.2861699. 2

[55] Xiaopeng Zheng, Hongbo Li, and DingkangWang. A new framework for fast homomorphic matrix multiplication.
Cryptology ePrint Archive, Paper 2023/1649, 2023. https://eprint.iacr.org/2023/1649. 2, 3, 4, 5, 11, 14, 16

[56] Jinbao Zhu, Songze Li, and Jie Li. Information-theoretically private matrix multiplication from MDS-coded
storage. IEEE Transactions on Information Forensics and Security, 18:1680–1695, 2023. https://doi.org/10.1109/
TIFS.2023.3249565. 2

22

https://doi.org/10.1109/ISCTrkiye61151.2023.10336104
https://doi.org/10.1109/ISCTrkiye61151.2023.10336104
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://doi.org/10.3390/s20154253
https://doi.org/10.3390/s20154253
https://doi.org/10.3837/tiis.2019.11.019
https://doi.org/10.1145/3394658
https://doi.org/10.1145/3394658
https://doi.org/10.1007/978-3-031-38551-3_1
https://doi.org/10.1007/978-3-031-38551-3_1
https://doi.org/10.1002/sec.1164
https://doi.org/10.1007/978-3-319-19962-7_27
https://doi.org/10.1109/TDSC.2018.2861699
https://doi.org/10.1109/TDSC.2018.2861699
https://eprint.iacr.org/2023/1649
https://doi.org/10.1109/TIFS.2023.3249565
https://doi.org/10.1109/TIFS.2023.3249565

A Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) schemes allow arithmetic circuits to be evaluated directly on ciphertexts
[43, 22]. Since Gentry’s seminal work [22], many FHE schemes have been designed, including BGV [10], B/FV [9, 18],
CKKS [12], FHEW [15], TFHE [14]. Different schemes may have different features. For instance, BGV, B/FV, and
CKKS are good at performing arithmetic operations on large vectors, CKKS supports floating-point computations,
and FHEW and TFHE run bootstrapping for one bit fast but slow for arithmetic operations. As matrix operations
require many vector arithmetic operations and floating-point computations happen commonly in practice, we take
CKKS as our basic FHE scheme. However, we note that all algorithms presented in this paper also apply to the BGV
and B/FV schemes.

Generally, an FHE scheme consists of the following algorithms:

• Setup(1𝜆). Given a security parameter 𝜆 as input, output parms.

• KeyGen(parms). Output a secret key sk = 𝒔 and the corresponding public key pk. (For convenience, we also
let pk include one or more evaluation keys.)

• Encpk (𝑏). Given a message 𝑏 ∈ M, output a ciphertext 𝑐 ∈ C, whereM and C are the plaintext space and
ciphertext space, respectively.

• Decsk (𝒄). Given a ciphertext 𝑐 ∈ C, output a message 𝑏 ∈ M.

• Evalpk (𝑓 , (𝑐1, · · · , 𝑐𝑘)). Given a function 𝑓 in𝑘 variables, and 𝑐1, · · · , 𝑐𝑘 with 𝑐𝑖 ← Encpk (𝑏𝑖), output a ciphertext
𝑐 such that Decsk (𝑐) ≠ 𝑓 (𝑏1, · · · ,𝑏𝑘) holds with negligible probability.

We omit the pk or sk for simplicity without ambiguity. An FHE scheme is said to be secure if it is IND-CPA secure. The
security of almost all existing FHE schemes is based on the assumptions of LWE [42], RLWE [36], or their variants.

B The LongRot Algorithm
Given 𝒂 = (𝑎0, . . . ,𝑎𝑑−1) ∈ R𝑑 , the LongRot operation implements the following functionality:

• Construct 𝒂 = (𝒂, . . . , 𝒂) ∈ R𝑡 ·𝑑 ;

• Rotate the vector 𝒂 to the left by 𝑘 positions, resulting in 𝒂′ = 𝜌𝑘 (𝒂);

• Select the first 𝜏 elements of 𝒂′ and divide them into
⌈
𝜏
ℓ

⌉
groups, each containing ℓ elements.

Recall 𝑑 = (𝑤 − 1)ℓ + 𝑧 with 0 ≤ 𝑧 < ℓ .

B.1 The Case of𝑤 > 1
Table 15 illustrates how LongRot works for the case of𝑤 > 1.

Table 15: An illustrative description of the plaintext version of LongRot.

𝒂 ∈ R𝑑
ℓ︷ ︸︸ ︷

𝑎0, . . . ,𝑎ℓ−1, . . . ,

ℓ︷ ︸︸ ︷
𝑎𝑢ℓ , . . . ,𝑎 (𝑢+1)ℓ−1, . . . ,

ℓ︷ ︸︸ ︷
𝑎 (𝑤−2)ℓ , . . . ,𝑎 (𝑤−1)ℓ−1,

𝑧︷ ︸︸ ︷
𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1︸ ︷︷ ︸

𝑑

𝑑 = (𝑤 − 1)ℓ + 𝑧, 𝑧 < ℓ

𝑗 = 0

𝑑−𝑘︷ ︸︸ ︷
𝑎𝑢ℓ+𝑣 , . . . ,𝑎 (𝑢+1)ℓ−1︸ ︷︷ ︸

ℓ−𝑣

,𝑎 (𝑢+1)ℓ , . . . ,𝑎 (𝑢+1)ℓ+𝑣−1︸ ︷︷ ︸
𝑣

, . . . ,𝑎 (𝑤−2)ℓ+𝑣 , . . . ,𝑎 (𝑤−1)ℓ−1︸ ︷︷ ︸
ℓ−𝑣

,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1 𝑘 = 𝑢ℓ + 𝑣, 𝑣 < ℓ

𝑗 = 1 𝑎0, . . . ,𝑎𝑣1−1︸ ︷︷ ︸
𝑣1

,𝑎𝑣1 , . . . ,𝑎ℓ−1︸ ︷︷ ︸
ℓ−𝑣1

,𝑎ℓ , . . . ,𝑎ℓ+𝑣1−1︸ ︷︷ ︸
𝑣1

, . . . ,𝑎 (𝑤−2)ℓ+𝑣1 , . . . ,𝑎 (𝑤−1)ℓ−1︸ ︷︷ ︸
ℓ−𝑣1

,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1 𝜏 = 𝜄ℓ +𝜅 , 𝜅 < ℓ

...
...

...
...

...
... 𝜏 − (𝑑 − 𝑘) = 𝛾𝑑 + 𝛿

𝑗 = 𝛾 𝑎0, . . . ,𝑎𝑣𝛾 −1︸ ︷︷ ︸
𝑣𝛾

,𝑎𝑣𝛾 , . . . ,𝑎ℓ−1︸ ︷︷ ︸
ℓ−𝑣𝛾

,𝑎ℓ , . . . ,𝑎ℓ+𝑣𝛾 −1︸ ︷︷ ︸
𝑣𝛾

, . . . ,𝑎 (𝑤−2)ℓ+𝑣𝛾 , . . . ,𝑎 (𝑤−1)ℓ−1︸ ︷︷ ︸
ℓ−𝑣𝛾

,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1 0 ≤ 𝛿 < 𝑑

𝑗 = 𝛾 + 1 𝑎0, . . . ,𝑎𝑣𝛾+1−1︸ ︷︷ ︸
𝑣𝛾+1

,𝑎𝑣𝛾+1 , . . . ,𝑎ℓ−1︸ ︷︷ ︸
ℓ−𝑣𝛾+1

, . . . ,𝑎 (𝛼−1)ℓ+𝑣𝛾+1 , . . . ,𝑎𝛼ℓ−1︸ ︷︷ ︸
ℓ−𝑣𝛾+1

,𝑎𝛼ℓ , . . . ,𝑎𝛼ℓ+𝛽−1 𝛿 = 𝛼ℓ + 𝛽 , 𝛽 < ℓ

Table 15 illustrates how LongRot works𝑤 > 1. We first introduce some notations:

• 𝑘 = 𝑢ℓ + 𝑣 with 0 ≤ 𝑣 < ℓ ,

23

• 𝜏 = 𝜄ℓ +𝜅 with 0 ≤ 𝜅 < ℓ ,

• 𝜏 − (𝑑 − 𝑘) = 𝛾𝑑 + 𝛿 with 0 ≤ 𝛿 < 𝑑 if 𝜏 > 𝑑 − 𝑘 ,

• 𝛿 = 𝛼ℓ + 𝛽 with 0 ≤ 𝛽 < ℓ .

Case 1: 𝜏 ≤ 𝑑 − 𝑘 In this case, we only need to consider the row of 𝑗 = 0 of Table 15 with the following two
subcases.

If 𝜄 = 0, LongRot outputs only one ciphertext, which is an encryption of 𝒂′0 = (𝑎𝑢ℓ+𝑣 , . . . ,𝑎𝑢ℓ+𝑣+𝜏−1). However, this
ciphertext may involve two input ciphertexts of LongRot depending on if 𝜏 ≤ ℓ − 𝑣 or not. If 𝜄 > 0, LongRot outputs
𝜄 + 1 ciphertexts. For 𝑖 = 0, 1, . . . , 𝜄 − 1, the corresponding plaintexts are 𝒂′𝑖 = (𝑎 (𝑢+𝑖)ℓ+𝑣 , . . . ,𝑎 (𝑢+𝑖+1)ℓ−1,𝑎 (𝑢+𝑖+1)ℓ ,
. . . ,𝑎 (𝑢+𝑖+1)ℓ+𝑣−1); and at last if 𝜅 ≤ ℓ − 𝑣 then 𝒂′𝜄 = (𝑎 (𝑢+𝜄)ℓ+𝑣 , . . . , 𝑎 (𝑢+𝜄)ℓ+𝑣+𝜅−1), else

𝒂′𝜄 = (𝑎 (𝑢+𝜄)ℓ+𝑣 , . . . ,𝑎 (𝑢+𝜄+1)ℓ−1,𝑎 (𝑢+𝜄+1)ℓ , . . . ,𝑎 (𝑢+𝜄+1)ℓ+𝜅−ℓ+𝑣−1).

Case 2: 𝜏 > 𝑑 − 𝑘 In this case, we need to consider the full Table 15. From Table 15, we observe that 𝑣𝑖 in each line
is the step size of the rotation, which can be computed in advance. Let 𝑣0 = 𝑣 . Then for 𝑗 = 1, . . . ,𝛾 + 1 define

𝑣 𝑗 =

{
ℓ − (𝑧 − 𝑣 𝑗−1) if 𝑧 > 𝑣 𝑗−1,
𝑣 𝑗−1 − 𝑧 if 𝑧 ≤ 𝑣 𝑗−1.

We also define the last index of the ciphertexts at the end of each row in Table 15: 𝑖0 = 𝑤 + 𝑢 + 𝑔(𝑧, 𝑣 𝑗) − 2 and
𝑖 𝑗 = 𝑤 +𝑔(𝑧, 𝑣 𝑗) − 2 for 𝑗 = 1, . . . ,𝛾 + 1, where 𝑔(𝑧, 𝑣 𝑗) = 1 if 𝑧 > 𝑣 𝑗 and 0 otherwise.

First, we consider the row 𝑗 = 0 of Table 15. When 𝑧 > 𝑣0, we have 𝒂′𝑖 = (𝑎 (𝑢+𝑖)ℓ+𝑣0 , . . . ,𝑎 (𝑢+𝑖+1)ℓ−1,𝑎 (𝑢+𝑖+1)ℓ ,
. . . 𝑎 (𝑢+𝑖+1)ℓ+𝑣0−1) for 𝑖 = 0, 1, . . . , 𝑖0 − 1 = 𝑤 − 𝑢 − 2, and 𝒂′𝑖0 = (𝑎 (𝑤−1)ℓ+𝑣0 , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1, 𝑎0, . . . ,𝑎𝑣1−1). When
𝑧 ≤ 𝑣0, we have 𝒂′𝑖 = (𝑎 (𝑢+𝑖)ℓ+𝑣0 , . . . ,𝑎 (𝑢+𝑖+1)ℓ−1, 𝑎 (𝑢+𝑖+1)ℓ , . . . ,𝑎 (𝑢+𝑖+1)ℓ+𝑣0−1) for 𝑖 = 0, 1, . . . , 𝑖0 − 1 = 𝑤 −𝑢 − 3, and
𝒂′𝑖0 = (𝑎 (𝑤−2)ℓ+𝑣0 , . . . ,𝑎 (𝑤−1)ℓ−1,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . ,𝑎𝑣1−1). Note that if 𝛾 = 0 and 𝛽 < 𝑣1 then the last 𝑣1
entries (𝑎0, . . . ,𝑎𝑣1−1) of 𝒂′𝑖0 should be replaced by (𝑎0, . . . ,𝑎𝛽−1). In addition, the current index of the last ciphertext
is ℎ := 𝑖0.

For the 𝑗-th row of Table 15 with 𝑗 = 1, . . . ,𝛾 − 1, we have 𝒂′
ℎ+𝑖+1 = (𝑎𝑖ℓ+𝑣𝑗 , . . . ,𝑎 (𝑖+1)ℓ−1,𝑎 (𝑖+1)ℓ , . . . 𝑎 (𝑖+1)ℓ+𝑣𝑗−1)

for 𝑖 = 0, 1, . . . , 𝑖 𝑗 − 1. If 𝑧 > 𝑣 𝑗 then 𝒂′
ℎ+𝑖 𝑗+1 = (𝑎 (𝑤−1)ℓ+𝑣𝑗 , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . ,𝑎𝑣𝑗+1−1) else

𝒂′
ℎ+𝑖 𝑗+1 = (𝑎 (𝑤−2)ℓ+𝑣𝑗 , . . . ,𝑎 (𝑤−1)ℓ−1,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . ,𝑎𝑣𝑗+1−1)

and update the index of the last ciphertext ℎ := ℎ + 𝑖 𝑗 + 1.
For the 𝛾-th row, we have 𝒂′

ℎ+𝑖+1 = (𝑎𝑖ℓ+𝑣𝛾 , . . . ,𝑎 (𝑖+1)ℓ−1, 𝑎 (𝑖+1)ℓ , . . . ,𝑎 (𝑖+1)ℓ+𝑣𝛾 −1) for 𝑖 = 0, 1, . . . , 𝑖𝛾 − 1. Then
update ℎ := ℎ + 𝑖𝛾 + 1. If 𝑧 > 𝑣𝛾 , then the last ciphertext of the row 𝛾 is an encryption of 𝒂′

ℎ
with

𝒂′
ℎ
= (𝑎 (𝑤−1)ℓ+𝑣𝛾 , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . 𝑎𝛽−1)

if 𝜏 < (ℎ + 1)ℓ and 𝛽 ≤ 𝑣𝛾+1, and 𝒂′ℎ = (𝑎 (𝑤−1)ℓ+𝑣𝛾 , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . , 𝑎𝑣𝛾+1−1) otherwise. If 𝑧 ≤ 𝑣𝛾 , then the last ci-
phertext of the row 𝛾 is an encryption of 𝒂′

ℎ
with 𝒂′

ℎ
= (𝑎 (𝑤−2)ℓ+𝑣𝛾 , . . . ,𝑎 (𝑤−1)ℓ−1,𝑎 (𝑤−1)ℓ , . . . ,𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . 𝑎𝛽−1)

if 𝜏 < (ℎ + 1)ℓ and 𝛽 ≤ 𝑣𝛾+1, and otherwise 𝒂′
ℎ
= (𝑎 (𝑤−2)ℓ+𝑣𝛾 , . . . ,𝑎 (𝑤−1)ℓ−1,𝑎 (𝑤−1)ℓ , . . . 𝑎 (𝑤−1)ℓ+𝑧−1,𝑎0, . . . 𝑎𝑣𝛾+1−1).

Now we consider the row 𝑗 = 𝛾 + 1 of Table 15. First for 𝑖 = 0, 1, . . . ,𝛼 − 2, we have

𝒂′
ℎ+𝑖+1 = (𝑎𝑖ℓ+𝑣𝛾+1 , . . . ,𝑎 (𝑖+1)ℓ−1,𝑎 (𝑖+1)ℓ , . . . ,𝑎 (𝑖+1)ℓ+𝑣𝛾+1−1). (6)

Then update ℎ := ℎ +max{0,𝛼 − 1}. (Indeed, if 𝛼 = 0, Eq. (6) will never be executed.) Further, if 𝛼 = 0 and 𝛽 > 𝑣𝛾+1
then update ℎ := ℎ + 1 and 𝒂′

ℎ
= (𝑎𝑣𝛾+1 , . . . ,𝑎𝛽−1). If 𝛼 > 0 and 𝛽 > 𝑣𝛾+1 then

𝒂′
ℎ+1 = (𝑎 (𝛼−1)ℓ+𝑣𝛾+1 , . . . ,𝑎𝛼ℓ−1,𝑎𝛼ℓ , . . . ,𝑎𝛼ℓ+𝑣𝛾+1−1)

and 𝒂′
ℎ+2 = (𝑎𝛼ℓ+𝑣𝛾+1 , . . . ,𝑎𝛼ℓ+𝛽−1), and update ℎ := ℎ + 2. If 𝛼 > 0 and 𝛽 ≤ 𝑣𝛾+1 then update ℎ := ℎ + 1 and

𝒂′
ℎ
= (𝑎 (𝛼−1)ℓ+𝑣𝛾+1 , . . . ,𝑎𝛼ℓ−1,𝑎𝛼ℓ , . . . ,𝑎𝛼ℓ+𝛽−1). This completes the functionality in the plaintext domain.
We can easily translate the discussion in Section 5.2 into the encrypted version as the following algorithm.

Algorithm 4 (LongRot)
Input: Ciphertexts (ct.𝒂𝑖)0≤𝑖<𝑤 for 𝒂 = (𝒂0, 𝒂1, . . . , 𝒂𝑤−2, 𝒂𝑤−1) ∈ R𝑑 with 𝒂𝑤−1 ∈ R𝑧 and 𝒂𝑖 ∈ Rℓ for 𝑖 = 0, 1, . . . ,𝑤 −

2 (i.e., 𝑑 = (𝑤 − 1)ℓ + 𝑧 with 0 ≤ 𝑧 < ℓ , where ℓ is the number of slots), the number of repeated times 𝑡 , the
number of positions to be rotated 𝑘 ∈ [0,𝑑), the number of selected elements 𝜏 .

Output: Ciphertexts (ct.𝒂′
𝑖
)0≤𝑖<⌈ 𝜏ℓ ⌉ , i.e.,

⌈
𝜏
ℓ

⌉
ciphertexts that encrypt the first 𝜏 elements of 𝒂′.

24

1. Compute two non-negative integers 𝑢 and 𝑣 such that 𝑘 = 𝑢ℓ + 𝑣 with 𝑣 < ℓ . Compute two non-negative
integers 𝛾 and 𝛿 such that 𝜏 − (𝑑 − 𝑘) = 𝛾𝑑 + 𝛿 with 𝛿 < 𝑑 . Compute two non-negative integers 𝛼 and 𝛽 such
that 𝛿 = 𝛼ℓ + 𝛽 with 𝛽 < ℓ . Compute two non-negative integers 𝜄 and 𝜅 such that 𝜏 = 𝜄 · ℓ +𝜅 with 𝜅 < ℓ . Set
𝑣0 := 𝑣 and ℎ := 0.

2. If 𝜏 ≤ 𝑑 − 𝑘 then do the following:

(a) If 𝜄 = 0 and 𝜏 ≤ ℓ − 𝑣 then compute ct.𝒂0 ← Rot𝑣 (ct.𝒂𝑢) and ct.𝒂′
ℎ
← Sl[0,𝜏−1] (ct.𝒂0).

(b) If 𝜄 = 0 and 𝜏 > ℓ − 𝑣 then compute ct.𝒂0 ← Rot𝑣 (ct.𝒂𝑢) and ct.𝒂1 ← Rot−(ℓ−𝑣) (ct.𝒂𝑢+1) and compute

ct.𝒂′
ℎ+1 ← Add(Sl[0,ℓ−𝑣−1] (ct.𝒂0), Sl[ℓ−𝑣,𝜏−1] (ct.𝒂1)).

(c) If 𝜄 > 0 then do the following: For 𝑖 = 0, 1, . . . , 𝜄 compute ct.𝒂𝑖 ← Rot𝑣 (ct.𝒂𝑢+𝑖). For 𝑖 = 0, 1, . . . , 𝜄 − 1
compute ct.𝒂′

𝑖
← Add(Sl[0,ℓ−𝑣−1] (ct.𝒂𝑖), Sl[ℓ−𝑣,ℓ−1] (ct.𝒂𝑖+1)). Set ℎ := ℎ + 𝜄. If 𝜅 ≤ ℓ − 𝑣 then ct.𝒂′

ℎ
←

Sl[0,𝜅−1] (ct.𝒂𝜄), else compute ct.𝒂𝜄+1 ← Rot−(ℓ−𝑣) (ct.𝒂𝑢+𝜄+1) and compute

ct.𝒂′
ℎ
← Add(Sl[0,ℓ−𝑣−1] (ct.𝒂𝜄), Sl[ℓ−𝑣,𝜅−1] (ct.𝒂𝜄+1)).

3. If 𝜏 > 𝑑 − 𝑘 then do the following:

(a) Set 𝑖0 := 𝑤 −𝑢 +𝑔(𝑧, 𝑣0) − 2, where 𝑔(𝑥 ,𝑦) = 1 if 𝑥 > 𝑦 and 0 otherwise.
(b) For 𝑗 = 1, 2, . . . ,𝛾 + 1 do: If 𝑧 > 𝑣 𝑗−1 then set 𝑣 𝑗 := ℓ − (𝑧 − 𝑣 𝑗−1) else set 𝑣 𝑗 := 𝑣 𝑗−1 − 𝑧; Set 𝑖 𝑗 :=

𝑤 +𝑔(𝑧, 𝑣 𝑗) − 2.
(c) For 𝑖 = 0, 1, . . . , 𝑖0 compute ct.𝒂𝑖 ← Rot𝑣0 (ct.𝒂𝑢+𝑖). For 𝑖 = 0, 1, . . . , 𝑖0 − 1 compute

ct.𝒂′
𝑖
← Add(Sl[0,ℓ−𝑣0−1] (ct.𝒂𝑖), Sl[ℓ−𝑣0 ,ℓ−1] (ct.𝒂𝑖+1)).

Update ct.𝒂′0 ← Rot𝑣0−𝑧 (ct.𝒂0) and ℎ := ℎ + 𝑖0.
(d) If 𝑧 > 𝑣0: If (𝑖0 + 1)ℓ > 𝜏 and 𝛽 ≤ 𝑣1 and 𝛾 = 0 then compute

ct.𝒂′
ℎ
← Add(Sl[0,𝑧−𝑣0−1] (ct.𝒂𝑖0), Sl[𝑧−𝑣0 ,𝑧−𝑣0+𝛽−1] (ct.𝒂′0))

else compute ct.𝒂′
ℎ
← Add(Sl[0,𝑧−𝑣0−1] (ct.𝒂𝑖0), Sl[𝑧−𝑣0 ,𝑧−𝑣0+𝑣1−1] (ct.𝒂′0)). Set ct.𝒂0 := ct.𝒂′0.

(e) If 𝑧 ≤ 𝑣0: Compute ct.𝒂𝑖0+1 ← Rot−(ℓ−𝑣0) (ct.𝒂𝑤−1) and

ct.𝒕 ← Add(Sl[0,ℓ−𝑣0−1] (ct.𝒂𝑖0), Sl[ℓ−𝑣0 ,ℓ−𝑣0+𝑧−1] (ct.𝒂𝑖0+1),

and set ct.𝒂0 := ct.𝒂′0; If (ℎ + 1)ℓ > 𝜏 and 𝛽 ≤ 𝑣1 and 𝛾 = 0 then compute

ct.𝒂′
ℎ
← Add(ct.𝒕 , Sl[ℓ−𝑣0+𝑧,ℓ−𝑣0+𝑧+𝛽−1] (ct.𝒂0)),

else compute
ct.𝒂′

ℎ
← Add(ct.𝒕 , Sl[ℓ−𝑣0+𝑧,ℓ−𝑣0+𝑧+𝑣1−1] (ct.𝒂0)).

(f) For 𝑗 = 1, 2, . . . ,𝛾 do the following:
i. For 𝑖 = 1, 2, . . . , 𝑖 𝑗 , compute ct.𝒂𝑖 ← Rot𝑣𝑗 (ct.𝒂𝑖). For 𝑖 = 0, 1, . . . , 𝑖 𝑗 − 1 compute

ct.𝒂′
ℎ+𝑖+1 ← Add(Sl[0,ℓ−𝑣𝑗−1] (ct.𝒂𝑖), Sl[ℓ−𝑣𝑗 ,ℓ−1] (ct.𝒂𝑖+1)).

Update ct.𝒂′0 ← Rot𝑣𝑗−𝑧 (ct.𝒂0) and ℎ := ℎ + 𝑖 𝑗 + 1.
ii. If 𝑧 > 𝑣 𝑗 : If (ℎ + 1)ℓ > 𝜏 and 𝛽 ≤ 𝑣1 and 𝑗 = 𝛾 then compute

ct.𝒂′
ℎ
← Add(Sl[0,𝑧−𝑣0−1] (ct.𝒂𝑖 𝑗), Sl[𝑧−𝑣0 ,𝑧−𝑣0+𝛽−1] (ct.𝒂′0))

else compute ct.𝒂′
ℎ
← Add(Sl[0,𝑧−𝑣𝑗−1] (ct.𝒂𝑖 𝑗), Sl[𝑧−𝑣𝑗 ,𝑧−𝑣𝑗+𝑣𝑗+1−1] (ct.𝒂′0)). Set ct.𝒂0 := ct.𝒂′0.

iii. If 𝑧 ≤ 𝑣 𝑗 : Compute ct.𝒂𝑖 𝑗+1 ← Rot−(ℓ−𝑣𝑗) (ct.𝒂𝑤−1) and

ct.𝒕 ← Add(Sl[0,ℓ−𝑣𝑗−1] (ct.𝒂𝑖 𝑗), Sl[ℓ−𝑣𝑗 ,ℓ−𝑣𝑗+𝑧−1] (ct.𝒂𝑖 𝑗+1),

and set ct.𝒂0 := ct.𝒂′0; If (ℎ + 1)ℓ > 𝜏 and 𝛽 ≤ 𝑣1 and 𝑗 = 𝛾 then compute

ct.𝒂′
ℎ
← Add(ct.𝒕 , Sl[ℓ−𝑣𝑗+𝑧,ℓ−𝑣𝑗+𝑧+𝛽−1] (ct.𝒂0))

else compute
ct.𝒂′

ℎ
← Add(ct.𝒕 , Sl[ℓ−𝑣𝑗+𝑧,ℓ−𝑣𝑗+𝑧+𝑣𝑗+1−1] (ct.𝒂0)).

25

(g) For 𝑖 = 1, 2, . . . ,𝛼 − 1 compute ct.𝒂𝑖 ← Rot𝑣𝛾+1 (ct.𝒂𝑖). For 𝑖 = 0, 1, . . . ,𝛼 − 2 compute

ct.𝒂′
ℎ+𝑖+1 ← Add(Sl[0,ℓ−𝑣𝛾+1−1] (ct.𝒂𝑖), Sl[ℓ−𝑣𝛾+1 ,ℓ−1] (ct.𝒂𝑖+1)).

Update ℎ := ℎ +max{0,𝛼 − 1}.
(h) If 𝛼 = 0 and 𝛽 > 𝑣𝛾+1 then compute ct.𝒂′

ℎ+1 ← Sl[0,𝛽−𝑣𝛾+1−1] (ct.𝒂0) and update ℎ := ℎ + 1.
(i) If 𝛼 > 0 compute ct.𝒂𝛼 ← Rot−(ℓ−𝑣𝛾+1) (ct.𝒂𝛼) and do the following:

i. If 𝛽 > 𝑣𝛾+1 compute ct.𝒂′
ℎ+1 ← Add(Sl[0,ℓ−𝑣𝛾+1−1] (ct.𝒂𝛼−1), Sl[ℓ−𝑣𝛾+1 ,ℓ−1] (ct.𝒂𝛼)) and

ct.𝒂′
ℎ+2 ← Sl[0,𝛽−𝑣𝛾+1−1] (ct.𝒂𝛼),

and update ℎ := ℎ + 2.
ii. If 𝛽 ≤ 𝑣𝛾+1 compute ct.𝒂′

ℎ+1 ← Add(Sl[0,ℓ−𝑣𝛾+1−1] (ct.𝒂𝛼−1), Sl[ℓ−𝑣𝛾+1 ,ℓ−𝑣𝛾+1+𝛽−1] (ct.𝒂𝛼)) and update
ℎ := ℎ + 1.

4. Return (ct.𝒂′
𝑖
)0≤𝑖≤ℎ .

Proposition 9. The LongRot algorithm is correct, requires at most
⌈
𝜏
ℓ

⌉
Rots, 2

⌈
𝜏
ℓ

⌉
+ 𝜏

𝑑
+ 1 CMuls, and one CMul

multiplicative depth.

Proof. After translating Algorithm 7 into its plaintext version, a straightforward verification shows that Algorithm
7 indeed accomplishes the aforementioned functionality at the beginning of Section 5.2 , thereby confirming its
correctness. To analyze the cost, without loss of generality, we only consider the case of 𝜏 > 𝑑 − 𝑘 and 𝛼 > 0.

While it follows from the correctness that ℎ =
⌈
𝜏
ℓ

⌉
− 1, it follows from the Algorithm that ℎ =

∑𝛾

𝑗=0 (𝑖 𝑗 + 1) + 𝛼 or
ℎ =

∑𝛾

𝑗=0 (𝑖 𝑗 + 1) + 𝛼 + 1. From Step 3c, 3(f)i, 3g and 3i, the number of Rots is
∑𝛾

𝑗=0 (𝑖 𝑗 + 1) + 𝛼 + 1 ≤ ℎ + 1 =
⌈
𝜏
ℓ

⌉
. For

the number of CMuls, we notice that the number of resulting ciphertexts is
⌈
𝜏
ℓ

⌉
and each ciphertext is a sum of two

selected ciphertexts, except for the 𝛾 + 1 ≤ 𝜏
𝑑
+ 1 ciphertexts computed in Step 3e and 3(f)iii, where each ciphertext is

a sum of three selected ciphertexts.

B.2 The Case of𝑤 = 1
We first introduce some notations for this case:

• 𝑑 = (𝑤 − 1)ℓ + 𝑧 with 0 ≤ 𝑧 < ℓ (hence𝑤 = 1 implies 𝑑 = 𝑧),
• 𝑘 satisfies 0 ≤ 𝑘 < 𝑧,
• 𝜏 = 𝜄ℓ +𝜅 with 0 ≤ 𝜅 < ℓ ,
• 𝜅 = 𝜇𝑧 + 𝜈 with 0 ≤ 𝜈 < 𝑧,
• ℓ = 𝜃𝑧 + 𝜂 with 0 ≤ 𝜂 < 𝑧.

Let 𝑘0 = 𝑘 . For 𝑖 = 0, 1, . . . , 𝜄 − 1 do the following: First, we construct 𝒂′𝑖 = (𝑎𝑘𝑖 , . . . ,𝑎𝑧−1,𝑎0, . . . ,𝑎𝑘𝑖−1). Then we
compute 𝒂′

𝑖
= (𝒂′𝑖 , . . . , 𝒂′𝑖︸ ︷︷ ︸

𝜃

, 𝒂𝑖), where

𝒂𝑖 =

{
(𝑎𝑘𝑖 , . . . ,𝑎𝑘𝑖+𝜂−1), if 𝜂 ≤ 𝑧 − 𝑘𝑖 ,
(𝑎𝑘𝑖 , . . . ,𝑎𝑧−1,𝑎0, . . . ,𝑎𝜂−(𝑧−𝑘𝑖)−1), if 𝜂 > 𝑧 − 𝑘𝑖 ,

(7)

and update

𝑘𝑖+1 =

0, if 𝜂 = 𝑧 − 𝑘𝑖 ,
𝑘𝑖 + 𝜂, if 𝜂 < 𝑧 − 𝑘𝑖 ,
𝜂 − (𝑧 − 𝑘𝑖), if 𝜂 > 𝑧 − 𝑘𝑖 .

At last, 𝒂′
𝜄
= (𝒂′𝜄 , . . . , 𝒂′𝜄︸ ︷︷ ︸

𝜇

, 𝒂𝜄) with 𝒂′𝜄 = (𝑎𝑘𝜄 , . . . ,𝑎𝑧−1,𝑎0, . . . ,𝑎𝑘𝜄−1) and

𝒂𝜄 =

{
(𝑎𝑘𝜄 , . . . ,𝑎𝑘𝜄+𝜈−1), if 𝜈 ≤ 𝑧 − 𝑘𝜄 ,
(𝑎𝑘𝜄 , . . . ,𝑎𝑧−1,𝑎0, . . . ,𝑎𝜈−(𝑧−𝑘𝜄)−1), if 𝜈 > 𝑧 − 𝑘𝜄 .

26

The encrypted version We now give the encrypted version of the above discussion.

Algorithm 10
Input: Ciphertexts ct.𝒂 for 𝒂 = (𝑎0, . . . ,𝑎𝑧−1) ∈ R𝑧 with 0 < 𝑧 < ℓ , where ℓ is the number of slots, the number of

positions to be rotated 𝑘 ∈ [0, 𝑧), and the number of selected elements 𝜏 .
Output: Ciphertexts (ct.𝒂′

𝑖
)0≤𝑖<⌈ 𝜏ℓ ⌉ , i.e.,

⌈
𝜏
ℓ

⌉
ciphertexts that encrypt the first 𝜏 elements of 𝒂′.

1. Compute two non-negative integers 𝜄 and 𝜅 such that 𝜏 = 𝜄ℓ +𝜅 with 𝜅 < ℓ . Compute two non-negative integers 𝜇
and 𝜈 such that 𝜅 = 𝜇𝑧 + 𝜈 with 𝜈 < 𝑧. Compute two non-negative integers 𝜃 and 𝜂 such that ℓ = 𝜃𝑧 + 𝜂 with 𝜂 < 𝑧.

2. Set 𝑘0 = 𝑘 . For 𝑖 = 0, 1, . . . , 𝜄 − 1 set 𝑘𝑖+1 by Eq. (7). Compute ct.𝒕 ← Repeat(ct.𝒂, max{𝜃 , ⌈(𝑘𝜄 + 𝜈)/𝑧⌉}).
3. For 𝑖 = 0, 1, . . . , 𝜄 − 1 do the following:

(a) Compute ct.𝒕1 ← Rot𝑘𝑖 (ct.𝒕)) and ct.𝒕2 ← Rot𝑘−𝜃𝑧 (ct.𝒕)). Then set

ct.𝒂′
𝑖
← Add(Sl[0,𝜃𝑧−𝑘𝑖−1] (ct.𝒕1), Sl[𝜃𝑧−𝑘𝑖 ,ℓ−1] (ct.𝒕2)).

4. If 𝜇 = 0 then compute ct.𝒕1 ← Rot𝑘𝜄 (ct.𝒂).
(a) If 𝜈 ≤ 𝑧 − 𝑘𝜄 then set ct.𝒂′

𝜄
← Sl[0,𝜈−1] (ct.𝒕1).

(b) If 𝜈 > 𝑧 − 𝑘𝜄 then compute ct.𝒕2 ← Rot𝑧−𝑣−𝑘𝜄 (ct.𝒂) and ct.𝒂′
𝜄
← Add(Sl[0,𝑧−𝑘𝜄−1] (ct.𝒕1), Sl[𝑧−𝑘𝜄 ,𝜈−1] (ct.𝒕2)).

5. If 𝜇 > 0 then compute ct.𝒕1 ← Rot𝑘𝜄 (ct.𝒕)) and ct.𝒕2 ← Rot𝑘𝜄−𝜇𝑧 (ct.𝒕)), and set

ct.𝒂′
𝜄
← Add(Sl[0,𝜇𝑧−𝑘𝜄−1] (ct.𝒕1), Sl[𝜇𝑧−𝑘𝜄 ,𝜇𝑧+𝜈−1] (ct.𝒕2)).

6. Return (ct.𝒂′
𝑖
)0≤𝑖≤𝜄 .

Proposition 11. Algorithm 10 is correct. It requires at most log
⌊
ℓ
𝑧

⌋
+ 2

⌈
𝜏
ℓ

⌉
Rots and 2

⌈
𝜏
ℓ

⌉
CMuls, respectively.

Based on Algorithm 10, one can also design the corresponding variant of Algorithm 8.However, it requires double
the number of Rots of Algorithm 8,since Algorithm 10 requires double the number of Rots compared with Algorithm
7. Thus, the resulting algorithm is not comparable with existing algorithms, e.g., Huang et al.’s algorithm [29].

C Missing Proofs
Proof of Proposition 5. For the correctness of Algorithm 2, we need the following properties that are all implied by
the pairwise coprimality of (𝑛,𝑚,𝑝).

Lemma 12. Suppose that the integers 𝑛,𝑚, and 𝑝 are pairwise coprime. Then for all 0 ≤ 𝑘 < 𝑚 and 0 ≤ 𝑖 < 𝑛𝑝 , we have

1. [[𝑘𝑛𝑝 + 𝑖]𝑚𝑛]𝑛 = [𝑖]𝑛 .

2.
[
[𝑘𝑛𝑝 + 𝑖]𝑚𝑝

]
𝑝
= [𝑖]𝑝 .

3. [[𝑘𝑛𝑝 + 𝑖]𝑚𝑛]𝑚 =
[
[𝑘𝑛𝑝 + 𝑖]𝑚𝑝

]
𝑚
.

4. For all 0 ≤ ℓ < 𝑚 with 𝑘 ≠ ℓ , [[𝑘𝑛𝑝 + 𝑖]𝑚𝑛]𝑚 ≠ [[ℓ𝑛𝑝 + 𝑖]𝑚𝑛]𝑚 .

Let 𝒂 and 𝒃 be the bicyclic encoding of 𝑨 ∈ R𝑛×𝑚 and 𝑩 ∈ R𝑚×𝑝 , respectively. Denote by 𝒂 and 𝒃 the resulting
vectors 𝒂 and 𝒃 in Step 2. Denote by 𝒙 the vector 𝒙 after Step 3,and by 𝒙 the resulting vector 𝒙 after Step 4. Let the
(𝑖 , 𝑗)-entry of 𝑨 and 𝑩 be 𝐴𝑖 ,𝑗 and 𝐵𝑖 ,𝑗 , respectively.

It follows from the bicyclic encoding and Step 2 that 𝑎
𝑖
= 𝑎 [𝑖]𝑚𝑛

= 𝐴[[𝑖]𝑚𝑛]𝑛 ,[[𝑖]𝑚𝑛]𝑚 and 𝑏
𝑖
= 𝑏 [𝑖]𝑚𝑝

=

𝐵 [[𝑖]𝑚𝑝]𝑚 ,[[𝑖]𝑚𝑝]𝑝 for 0 ≤ 𝑖 < 𝑛𝑚𝑝 . Now, the definition of the segmented sum of vector implies that for 0 ≤ 𝑖 < 𝑛𝑝 ,

𝑥𝑖 =
∑︁

0≤𝑘<𝑚
𝑥
𝑘𝑛𝑝+𝑖

=
∑︁

0≤𝑘<𝑚
𝑎
𝑘𝑛𝑝+𝑖 · 𝑏𝑘𝑛𝑝+𝑖

=
∑︁

0≤𝑘<𝑚
𝐴[[𝑘𝑛𝑝+𝑖]𝑚𝑛]𝑛 ,[[𝑘𝑛𝑝+𝑖]𝑚𝑛]𝑚𝐵 [[𝑘𝑛𝑝+𝑖]𝑚𝑝]𝑚 ,[[𝑘𝑛𝑝+𝑖]𝑚𝑝]𝑝

=
∑︁

0≤𝑘<𝑚
𝐴[𝑖]𝑛 ,[[𝑘𝑛𝑝+𝑖]𝑚𝑛]𝑚 · 𝐵 [[𝑘𝑛𝑝+𝑖]𝑚𝑝]𝑚 ,[𝑖]𝑝 (8)

=
∑︁

0≤ 𝑗<𝑚
𝐴[𝑖]𝑛 ,𝑗 · 𝐵 𝑗 ,[𝑖]𝑝 (9)

= 𝑋 [𝑖]𝑛 ,[𝑖]𝑝 ,

27

where Eq. (8) (resp. (9)) follows from the items 1 and 2 (resp. 3 and 4) of Lemma 12.
In Step 2, we need at most ⌈log𝑝⌉ (resp. ⌈log𝑛⌉) vector rotations to update 𝒂 (resp. 𝒃), and we need at most

⌈log𝑚⌉ vector rotations to compute the segment-sum in Step 4. The only occurrence of component-wise vector
product happens in Step 3, which completes the proof.

Proof of Proposition 6. For𝑨 = (𝑎𝑖 ,𝑗)0≤𝑖<𝑛,0≤ 𝑗<𝑚 , according to the definition of bicyclic encoding, we have 𝒅 (𝑨) = (𝑑𝑘)
with𝑑𝑘 = 𝑎 [𝑘]𝑛 ,[𝑘]𝑚 for 0 ≤ 𝑘 < 𝑛 ·𝑚. For𝑨T = (𝑎′𝑖 ,𝑗)0≤𝑖<𝑚,0≤ 𝑗<𝑛 with𝑎′𝑖 ,𝑗 = 𝑎 𝑗 ,𝑖 , we assume that 𝒅 (𝑨T) = (𝑑 ′

𝑘
)0≤𝑘<𝑛·𝑚 .

Obviously, 𝑑 ′
𝑘
= 𝑎′[𝑘]𝑚 ,[𝑘]𝑛 = 𝑎 [𝑘]𝑛 ,[𝑘]𝑚 = 𝑑𝑘 for 0 ≤ 𝑘 < 𝑛 ·𝑚.

28

	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Technique Overview

	2 Homomorphic Operations
	3 Bicyclic Encoding for Matrices
	3.1 Bicyclic Encoding
	3.2 Matrix Multiplication under Bicyclic Encoding
	3.3 Encrypted Matrix Operations under Bicyclic Encoding

	4 Encrypted Matrix Multiplication under Bicyclic Encoding
	4.1 Building Blocks
	4.2 Encrypted Version of Algorithm 1
	4.3 Encrypted Version of Algorithm 2

	5 Encrypted Matrices of High Dimensions
	5.1 Block Matrix Multiplication
	5.2 Segmented Matrix Multiplication

	6 Optimized segmented version of Lu et al.'s algorithm
	6.1 Lu et al.'s Algorithm
	6.2 Segmented Lu et al.'s Algorithm

	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Setup
	7.3 Matrices with Small Dimension
	7.4 Large Square Matrix Multiplication
	7.5 Rectangular Matrix Multiplication

	8 Conclusion
	A Fully Homomorphic Encryption
	B The LongRot Algorithm
	B.1 The case of w>1
	B.2 The case of w=1

	C Missing Proofs

