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THE PSLQ ALGORITHM FOR EMPIRICAL DATA

YONG FENG, JINGWEI CHEN, AND WENYUAN WU

ABSTRACT. The celebrated integer relation finding algorithm PSLQ has been
successfully used in many applications. PSLQ was only analyzed theoretically
for exact input data, however, when the input data are irrational numbers,
they must be approximate ones due to the finite precision of the computer.
When the algorithm takes empirical data (inexact data with error bounded)
instead of exact real numbers as its input, how do we theoretically ensure the
output of the algorithm to be an exact integer relation?

In this paper, we investigate the PSLQ algorithm for empirical data as its
input. Firstly, we give a termination condition for this case. Secondly, we
analyze a perturbation on the hyperplane matrix constructed from the input
data and hence disclose a relationship between the accuracy of the input data
and the output quality (an upper bound on the absolute value of the inner
product of the exact data and the computed integer relation), which naturally
leads to an error control strategy for PSLQ. Further, we analyze the complexity
bound of the PSLQ algorithm for empirical data. Examples on transcendental
numbers and algebraic numbers show the meaningfulness of our error control
strategy.

1. INTRODUCTION

A vector m € Z™\ {0} is called an integer relation for a € R™ if (ar, m) = 0.
The problem of finding integer relations for rational or real numbers can be dated
back to the time of Euclid. It is closely related to the problem of finding a small
vector in a Euclidean lattice. In fact, the celebrated Lenstra—Lenstra—Lovasz (LLL)
lattice basis reduction algorithm can be used to find an integer relation. This was
already pointed out in [20, page 525]. The HJLS algorithm [I6] is the first proved
polynomial time algorithm for integer relation finding. The PSLQ algorithm [13|[14]
is one of the most frequently used algorithms to find integer relations. Both HJLS
and PSLQ can be viewed as algorithms to compute the intersection between a
lattice and a vector space; see [I1]. For detailed historical notes, we refer to [T4L[16].
Nowadays, integer relation finding has been successfully used in different areas,
such as experimental math [822] and physics [7]. For more applications, we refer
the reader to [10] and the references therein.
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However, there always exist some data that can only be obtained with limited
accuracy. Indeed, all the input data in applications above are of limited accuracy,
and hence not exact values. Consequently, it is of great importance to study how
to obtain exact integer relations for a from an approximation of & by PSLQ.

To the best of our knowledge, there exists only an experimental result on this
topic, due to Bailey. Bailey in [5] suggested that if one wishes to recover an integer
relation with coefficients bounded by G for an n-dimensional vector «, then the
input vector o must be specified to at least nlog;, G decimal digits, and one must
employ floating-point arithmetic with at least nlog,, G accurate digits. Using this
experimental result, a lot of nontrivial integer relations have been discovered by
several implementations of PSLQ, such as MPFUN90 [4], ARPREC [2], etc., all
of which employ high precision floating-point arithmetic. Recently, a PSLQ im-
plementation in a new arbitrary precision package MPFUN2015 [3] has been used
to discover large Poisson polynomials [], including the largest successful integer
relation computations performed to date (using 64,000 decimal digits), based on
the precision estimation suggested by Bailey. Bailey’s precision estimation works
well in practice, however it lacks theoretical support. In this paper, we attempt to
provide a theory for the error control of PSLQ.

Let & = (ai,...,ap) € R™ be the intrinsic data (exact data that may not
be known) with an integer relation within a 2-norm bound M, and let & be the
empirical data with || — @&l|2 < €1. Generally, @ may not have an integer relation
within the bound M. Therefore, the PSLQ algorithm may not terminate when we
compute an integer relation from & because the element h,, ,_; of the hyperplane
matrix (see () and Algorithm @) may never be transformed to zero.

So, firstly, we propose a new termination condition for the PSLQ algorithm.
Secondly, even if PSLQ returns m from &, we need to determine whether (o, m) =
0, without knowing the intrinsic data «. To do this requires a gap bound § for
|{a, m}|. A so-called gap bound for |(a, m)| is that there exist a given § > 0 such
that [{(a,m)| > 6 whenever |{(a,m)| # 0. If there exists no further information
about a, then there does not exist a gap bound in general. However, a gap bound
can be given when the «;’s are algebraic numbers [I8,[I9]. Once we have a gap
bound 4 and |(a, m)| < 4, it guarantees (a, m) = 0, even without knowing a. In
this paper, we will not discuss the gap bound, but focus on how to estimate |(c, m)|
via establishing a relation between |{a,m)| and (&, m)|. Thirdly, we analyze the
computation complexity of the PSLQ algorithm for empirical data. Finally, we also
give some illustrative examples that show how helpful the error control strategies
are for applications of PSLQ.

2. PRELIMINARIES

For completeness, we recall the PSLQ algorithm in this section. As indicated in
[14], PSLQ works for both the real case and the complex case. For the complex
case, it may find a Gaussian integer relation for a given a € C". For simplicity,
we only consider the real case here. Let a = (aq,...,a,) € R™ with a; # 0 for
i=1,...,n. Given « as above, define the hyperplane matric H, = (h; ;) with

0, ifl<i<j<n-—1,
(21) hiyj = Si+1/8i, if 1 < 1 2] <n-— 1,
—OéiO[j/(Sij_i_l), if 1 < j <1 < n,

where s?zzzzjai >0forj=1,2,...,n.
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Further, we can assume that ||| = 1 (]| - || is the Euclidean norm), since the
hyperplane matrix H, is scale-invariant with respect to «, i.e., H, = H.., for
ce R\ {0}

Algebraically, PSLQ produces a series of unimodular matrices in GL,,(Z) multi-
plying H,, from the left and a series of orthogonal matrices multiplying H, from
the right. These matrices are produced by the following subroutines (Algorithms

[ 2 and B)).

Algorithm 1 (SizeReduction)

Require: A lower trapezoidal n x (n — 1) matrix H = (h; ;) with h; ; =01if j > ¢
and h;; # 0.
Ensure: A unimodular matrix D such that H := D-H = (h; ;) satisfying |k, ;| <
|hj)j‘/2 for 1 < j<i<n.
1: D:=1,.
2: for i from 2 to n do
3: for j from i — 1 to 1 by stepsize —1 do
4 q .= Lhi,j/hj,j + O5J
5 for k from 1 to n do
6: dz’,k = di,k — qdj7k.
7 end for
8: end for
9: end for

We call the process in Algorithm [ size reduction. In the PSLQ paper [14], size
reduction is called Hermite reduction. To avoid confusion with the Hermite Normal
Form for integral matrices or the Hermite reduction in the integration of algebraic
functions [I7] (also for creative telescoping) and to be consistent with the similar
process used in lattice basis reduction algorithms, we replace “Hermite reduction”
by “size reduction”.

Algorithm 2 (BergmanSwap)

Require: A lower trapezoidal n x (n — 1) matrix H = (h; ;) with h; ; =01if j > ¢
and h;; # 0, and a parameter vy > 2//3.
Ensure: A unimodular matrix D resulting from the exchange of two rows of the
identity matrix and the exchange position r.
1. D:=1,.
2: Choose 7 such that y"[h,,| = max e, n-1} {'yj . \hj7j|}, and then swap the
rth row and the (r 4+ 1)th row of D.

After a Bergman swap, H := DH is usually not lower trapezoidal. We may
multiply the updated H by an orthogonal matrix @ from the right such that HQ
is again a lower trapezoidal matrix. This procedure is called Corner, which is
equivalent to performing the LQ-decomposition of H (QR-decomposition of HT).
Suppose after a Bergman swap, the rth and (r + 1)th rows of H are swapped. Let

(2.2) N=her, B=hry1r, A=hepirp1, 0= /B2 + A
Then we can give the following explicit formula for Corner instead of computing
the full LQ-decomposition.
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Algorithm 3 (Corner)

Require: An n x (n — 1) matrix H that is obtained by a Bergman swap with the
rth and (r + 1)th rows swapped, where r < n — 1.

Ensure: An orthogonal matrix @ such that HQ is the L-factor of the LQ-
decomposition of H.

1: Return Q = (¢; ;) € RP=D>x(=1) with

B/6  iti=rg=r,

N6 fi=rj=r+1,

NS ifi=r4+1j=r,

BTN g fi=rali=rt1,
1 i=jFrori=j#r+1,
0 otherwise.

Now, we are ready to give the following description of the PSLQ algorithm.
Note that we suppose that a € R™ has integer relations. In fact, this hypothesis
is reasonable, because Babai, Just, and Meyer auf der Heide [I] showed that under
the exact real arithmetic computation model, it is not possible to decide whether
there exists an integer relation for given input a € R™. In addition, we omit an
early termination condition that checks whether there exists a column of B that is
an integer relation, because it does not impact the analysis for the worst case.

Algorithm 4 (PSLQ)

Require: An n-dimensional vector & = (v, ..., a,) with ||a| = 1 (suppose that
o has integer relations) and v > 2/v/3.
Ensure: An integer relation m for c.

1: Construct H,, as in formula (21)). Set H := H,,. Set the n x n matrices A and
B to the identity matrix I,,. Let D := SizeReduce(H). Update o := D!,
H:=DH, A:=DA, and B:= BD™..

2: while h,, ,_1 # 0 do

3:  Let (D, r) := BergmanSwap(H,~), where D is the transform matrix and r

is the exchange position. Update @ := aD~ ', H := DH, A := DA, and
B:=BD™ 1.

4: if r<n—1 then

5: Let @ = Corner(H) and update H := HQ.

6: end if

7. Let D := SizeReduce(H). Update o := aD~!, H:= DH, A:= DA, and
B:=BD™ 1.

8: end while
9: Return the (n — 1)th column of B.

Remark 2.1. At the beginning, the hyperplane matrix H, has all diagonal elements
nonzero. During the algorithm, all diagonal elements of H are always nonzero until
the termination of PSLQ.

For the convenience of description, the procedure from step [ to step [[in Algo-
rithm @l is called an iteration of PSLQ as in [I4] Section 3].
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Theorem 2.2 ([I4] Theorem 2]). Assume that o € R™ has integer relations. Let
Ao be the least 2-norm of relations for ao. Then PSLQ will find an integer relation

for a in mo more than
n\ log (7" A\a))
2 log T

iterations, where T = 1/1/1/p2 + 1/42 with v > 2/+/3 and p = 2.
3. THE PSLQ. ALGORITHM

The termination of PSLQ requires one to check whether h,, ,_1 = 0. When the
input data o with integer relations are exact, it will hold that h,,—1 = 0 after
finitely many iterations of PSLQ. And hence the output is an integer relation for
a. However, when the input data & is an approximation of ¢, there may not exist
any integer relation for &. So hy, ,—1 is usually not equal to zero. This leads to
the nontermination of PSLQ. Therefore, we first need to explore the termination
condition of PSLQ for empirical data.

3.1. An invariant relation of PSLQ. Indeed, the quantity h, ,—1 plays a very
important role in PSLQ, not only for exact data, but also for empirical data. The
following theorem gives a relationship between the (n — 1)th column of B (= A~1)
in PSLQ and h,, ,—1, which will be shown to be crucial for the study of termination
of PSLQ with empirical data.

Denote by H (k) the end result of H after exactly k iterations of PSLQ.

Theorem 3.1. Assume that H(k) = AH,Q, where H(k) = (h; ;(k)) is a lower
trapezoidal matriz. Set (z1(k), ..., 2n—1(k), zn(k)) = (o1, ..., n_1,,)A"L. Then,
it holds that
21 (B) < \/f g + af[hnn 1 (F)]

Proof. From

(z1(k)s ..oy 2na1(k), 2o (k) H (k) = A " AH,Q = aH,Q =0
it follows that

Zn—l(k)hn—l,n—l(k;) + Zn(k)hn)n_l(k) = 0.
From [I4, Lemma 5], it holds that h,_1,-1(k) # 0 before the termination of
Algorithm @l Then, it is obtained that
zn (k)

hn—l,n—l(k)

We claim that |#%\ does not increase as k increases. In Algorithm [ this
quantity can be possibfy changed only in SizeReduce, BergmanSwap, and Corner, so
we consider them next, respectively. When the size reduction (step [7) is performed
onrow i <n-—1of H, z, and hy,_1,,_1 are unchanged, so | —=—1| is unchanged.

(3.1) 1 (k) = — B 1 (k).

hpn_1n-1
When ¢ = n, the size reduction matrix is as follows:
1 0 0 - 0 0
o 1 0 --- 0 0
Do o o0 1 --- 0 0 _ I,, 0
Lo K 1)
o 0 0o --- 1 0
ki ko ks -+ kpo1 1
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where K = (ki1,...,k,—1) is an integer vector and I,_; is the (n — 1) x (n — 1)
identify matrix. Its inverse is

1 0 0o - 0 0

0 1 0o - 0 0

0O 0 1 - 0 0 I 0

-1 _ o n—1
A N R
0 0 0o - 1 0
—ki —ke —ks -+ —kp1 1

It is easy to see that the nth column of A='D~! is the same as that of A™!.
Therefore, z, is unchanged. On the other hand, h,,_1,—1 is also unchanged after
size reduction. Hence, hﬂj’f”il is unchanged. In stepBlof Algorithm[] the Bergman
swap is performed between the rth and (r+1)th rows. When r < n—2, it is obvious
that 2z, and hy,—1 ,—1 are unchanged. When r = n —2, the columns n—2 and n—1
of A=! are swapped. So the nth column of A~! is unchanged and z, is also

unchanged, that is z,(k + 1) = 2z, (k), while h,,_1 ,,_1 is changed as follows. Before
StePE{L let n= hn72,n72(k)a ﬂ = hnfl,n72(k)a A= hnfl,nfl(k), and § = V 52 + >‘2;

then we have
(’17 0) step§ (ﬁ /\> step§ ((5 0 )

8 A
R v 0 ¥ o

Therefore, after step Bl the new hy,_1,—1(k+1) = —%. Since the swap occurs at
rows n — 2 and n — 1, it holds that || > v|\|. Note that |5| < % yields

—n 1 1
R 2 ,\2> 1 L
VEtE Vit

where p = 2. So, it follows that

A
hntaca(k 4+ 1) = | = 22 > 7],
Hence, it holds that
zn(k+1) ' - za(k)1 1 2n (k) '
hn—lm—l(k"‘l) A T T hn—l,n—l(k) ’
Since % < 1, it implies that ‘h”j"nil ‘ decreases. When r =n — 1, rows n — 1 and

n of H are swapped, and so are columns n — 1 and n of A~'. Hence h,,_1 1 and
hn,n—1 are swapped, and z,_1 and z, are exchanged. Therefore, hy,_1 ,_1(k+1) =
hnn—1(k) and z,(k+ 1) = z,—1(k). From formula B1]), it follows that

hnm—l(k) hn—lm—l(k + 1)

hnfl,nfl(k) Zn(k;) - hnfl,nfl(k) Zn(k)

’ remains unchanged. Up to now, we have shown that

2k +1) = 2z-1(k) = —

Zn
hn—1,n—1

In this case,

‘ Zn

| either decreases or remains unchanged after the (k+1)th iteration of PSLQ.

hnfl,nfl
At the beginning of PSLQ, we have that z,(1) = a, and hy,—1 ,-1(k) = __laml
’ ’ V a31—1+agl

Hence " W

Zn(k zn(1

- < - <W\Jo2_+ a2,
‘ hn—l,n—l(k) ‘ hn—l,n—l(l) ‘ !

which completes the proof. O
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The property presented in Theorem [B.1]is an invariant of PSLQ in the sense that
it always holds during the algorithm. Furthermore, Theorem [B.1] can be used to
design an algorithm to find approximate integer relations in the following sense.
Given a which may not have an integer relation, if we take the (n — 1)th column
of B as an approximate integer relation for a in Algorithm @ Theorem B gives
an error estimate, i.e., if PSLQ returns the (n — 1)th column of B, denoted by m,

when |h, n—1] < €2, then
a,m)| < y/ain_ i +af e

Now we improve the algorithm as follows.

Algorithm 5 (PSLQ.)

Require: A lower trapezoidal matrix H € R~ with all diagonal entries
nonzero, € > 0 and vy > 2/\/§
Ensure: An n-dimensional integer vector m.
1: Set the n x n matrices A and B to the identity matrix I,,. Let D :=
SizeReduce(H). Update H := DH, A := DA, and B := BD~..
2: while |h, n—1]| > €2 do
3:  Let (D, r) := BergmanSwap(H,~), where D is the transform matrix and r
is the exchange position. Update H := DH, A := DA, and B := BD™'.
if r <n—1 then
Let @ = Corner(H) and update H := HQ.
end if
Let D := SizeReduce(H). Update H := DH, A := DA, and B := BD~ 1.
8: end while
9: Return the (n — 1)th column of B.

IESHE A

Besides the termination condition being replaced by |hpn—1| < €2, the main
difference of PSLQ, from PSLQ is that the input is changed as a more general lower
trapezoidal matrix which may not satisfy the fine structure in (21). The remainder
of this section will be devoted to analyze PSLQ..

3.2. Termination and complexity. We now show that PSLQ, terminates after a
finitely many number of iterations stated in the following theorem.

Theorem 3.2. Given H € R**("=1)  pSLQ. terminates in no more than
n(n+1)((n —1)log~y + log é)
2logT
iterations, where 7 = 1/1/1/p% + 1/~2.
Proof. Define the II function after k iterations as follows:

hanax (k) )" 7
,ynfl ?

(k) = 1:[ max (h”(k:)| ,

where hpax (k) is the maximum of |h; ;(k)| for i = 1,2,...,n— 1. Then the proof is
similar to the proof of [I4) Theorem 2|. See Appendix [Bl for the full proof. O
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Note that if H is the hyperplane matrix for & € R™ and « has an integer relation,
let M, be the minimal 2-norm of integer relations for a. Then from [14], Theorem
1], it holds that h;(k) < M,,. From inequality (B.2), it can be obtained that

n(n —1)((n —1)logy + log m) < n(n —1)((n — 1) log~y + log M,)

k<

)

2log T 2log T

which is the same as [T4, Theorem 2].

3.3. Perturbation analysis of PSLQ.. Before we present the technical details,
we recall some notation. For the intrinsic data a, we assume that we can only
obtain the corresponding empirical data & with || — &|2 < 1. For &, we can
construct its hyperplane matrix Hy as in (27I). But we cannot use Hj as the input
matrix for PSLQ.. Instead, we use H, to represent a more general perturbation
to H, including round-off errors in computing Hg, which only keeps the lower
trapezoidal structure and satisfies

(3.2) IHo — HollF < es,

where || - || is the matrix Frobenius norm. Suppose that one wants to find an
integer relation for o € R™ by using PSLQ,, where the input is H,, the termination
condition is |k, n—1] < €2, and the output is m. Next, we investigate the relations
among £s, €3, and |(m, a)|.

Denote by Hy;_ ,,_1) the submatrix of H,, that consists of the first n —1 rows and
the first n — 1 columns. It follows from ([B2]) that HH[l..n—l] —Hpjy yoqllr <es.

—1 ; see

First, we give explicit formulae for the F-norm of Hj; ,_1; and H[l_.n_l]7

Appendix [A] for the proof.

Lemma 3.3. Let the notation be as above. Then

_ ex]®
Iyl = (= 2) + T
2
(87
[Hp oyl = (n—2) + —25.
o=l I

. . . . 51
The following lemma enables us to give an estimation on ||[Hy ,,_jl|F-

Lemma 3.4 ([I5, Theorem 2.3.4]). Let A be a nonsingular matriz with perturbation
E. Let|.| denote any matriz norm satisfying inequality | BC|| < || B]|||C]| for any
matrices B and C. If |[EA™Y|| < 1, then A + E is nonsingular, and it holds that

EAY
A+E)'-A! <H7 A7)
(A +E) I< g ia
Applying the above lemma to H|;_ , ) yields the following corollary.
Corollary 3.5. Let H, = H,+AH, and |AH,|r < 3, Hyy —q) and ﬁu..nq]

denote submatrices consisting of the first (n — 1) rows and the first (n—1) columns
of H, and H , respectively. When e3 < H{y 1) is nonsingular and

it holds that

1
[

1 1
H < H! :
I [1..n71]||F =1 ESHH[I | [1..n71]||F

1
..nfl]”F
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Proof. When e3 < , it holds that

1
Il H = e

HAHl n— 1]H1 n— 1]HF < HAHl n— 1]HF||H1 n— 1]HF
< |AHu|r - 1HT e

< €z HH[Iln—l]”F < 1.

From Lemma [3.4] ﬁ[l_,n,l] is nonsingular and it follows that

— 1 1
[Hpy noyllr < = IH, yle
[.n-1] 1—|[AH} e 1]H[1 1] Ir [.n=1l
1
1=, ylle
1_53HH1n 1]”F [1.n—1]
This completes the proof. (Il

Corollary [3.5] shows that when e3 < 1/||H1 e 1]HF’ it holds that h;; # 0
for i = 1,...,n — 1. Denote by @ = (@1,...,a,) a unit real vector satisfying
aH, =0. Without loss of generality, we assume that @, # 0. Otherwise we can
deduce @ = 0, which contradicts the fact that @ is a unit vector. (In fact, since
&n_lﬁn_l,n_l + dnﬁnm_l = 0 and En—l,n—l # 0 we have that &, = 0 implies
@p—1 = 0. Similarly, @; =0 fori=1,2,...,n—2.) Moreover, we can choose vector
a with @, > 0. Next, we give a nonzero lower bound on @,,.

Lemma 3.6. Let & = (&1,...,&n—1,1) be a real vector with ||€]] < M, and let
8= ”g—u = (1, Bn-1,Bn). Then it holds that B,| > 3.

Proof. According to assumptions,

B B
1= 18l = [f (5 2520 | = Ul < 16 Nl < 18l
Bn ﬁ’ﬂ
The proof of lemma is finished. O

The above lemma enables us to give a lower bound of some component of a unit
vector.

Lemma 3.7. Let @ = (Qy,...,0n_1,0,) be a unit vector such that a@H, = 0. If
: ; ; an
g3 given in B2) is less than TSt then
G| > on .
2\/1 —a%\/(n—Z)oz%—l—l—l—Qozn
Proof. Consider the linear system (z1, ... ,xn)ﬁa = 0 with unknowns x; for ¢ =
1,2,...,n. Since the rank of H, is at most n — 1, we can assume that x, = 1; then

it reduces to the following system:

(:I:lv ceey xnfl)ﬁ[l..nfl] = _(En,la ) hn,nfl)-
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If eg < W#W’ then H; ,_1) is nonsingular by Lemma [3.3 and Corollary
B3 so (z1,...,2n-1) = —(hn1,-.. 7En,n,1)ﬁ[71‘1.n71]. Hence, it holds that
— — —1
(@1, an—1)ll2 < (Bn1s oo hn—1) 2l H g o ll2
— — —1
S hnas s 1)l Hpy gyl 7
—1
< (hnas-- s hnn—1)ll2 + e3) [ Hp oy llr

< 1—a2+

= S,
:2\/1—a2||H11n ylle+1
2y/1—0a2y/(n—2)al +1

Tl

+ 1

Thus, it is obtained that

(@1, zprsan)lle < (|21, 2na)ll2 +1

2\/1—042\/ 2)a2 +1

< +2

2\/1—a2\/n— a2 + 14+ 2,

an
From Lemma [3.6] it follows that
| > 1 S Qy,
YT e, za) |l T 2y/1T— a2/ (n—2)a2 + 1+ 20,
The proof of the lemma is finished. (]

We now give the main theorem of this paper, which can be seen as a forward
error analysis of PSLQ, for the perturbation introduced in (2.

Theorem 3.8. Given a real vector o = (a1,...,q0), let Hy, be the hyperplane
matriz constructed as in (I?:ﬂ) Let H, be an approximate matriz of H, with

|Ho — Hollp <e3 < ﬁ Let A be the unimodular matriz, and let Q be

the orthogonal matriz such that H = (h; ;) = AH ,Q is a lower trapezoidal matrix
at the termination of PSLQ. with |hy n—1| < €2. Let m denote the (n— 1)th column
of A=1. Then

‘<a= m>| <C- (HmHES + an52)7

where C = 2y ("_2Lai+1+a").

Proof. Suppose that PSLQ. returns m with H, as the hyperplane matrix, when
|hnn—1] < €2. Then this process can be seen as running PSLQ, for a unit vector @
satisfying @H, = 0. According to Theorem B.I} we have |(a, m)| < 2. Now we
consider the system

(3.3) H,c=m+(0,0,...,0,0)",
where ¢ = (c1,¢a,...,¢,_1)7 is the unknown vector. We have that

0 =aH,c= (a,m)+a,b.
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Hence @,b = — (&, m), and we have
€
b < ==
n

From (33) it holds that
a,m)| = |aHqac— anb| < |aHqc|+ |an||b]

< ’a(ﬁa - Ha)c’ + |, |]b]

< le[Ho — Hall2 [le]| + |aul[]

< lellllHo — Hall2 [le]] + |on[b]

< |_ nl

@l
Since €3 < W, by Lemma B.7 it follows that
(3.4) [{a.m)| < [l - llel &3 +2(v/1 = a2/(n = 2)a2 + 1 + ap)es
The first n — 1 equations of ([B.3]) give a square system
C1 m1
Hynq| @ |=]
Cn—1 Mp—1
Then it is obtained that
mi
—1 . —1
el < 1Hp nyll2 : <|Hpy pyllellml].
Mp—1 2
Since €3 < Tg)a%“, by Corollary we have
el < - 1HL e lml
cl| < F||T12]|2
1- ||H[1 n— 1]||F [1..n=1]

2/(n —2)a2 + 1

n

<2H!, yllrlm]z <

[mf2.

Substituting the above inequality into (3.4) yields

(e, m)| < [lexl| €]l €3 +2(v/1 = @2 +/(n = 2)02 + 1 + an)er
2 —2)a?
< V(= 2)on

Qp

\/ a +1 +an
< mlles +2(v/(n — 2)a2 + 1+ ayp)ea
2(4/( n—2a +1 +an

= ||€3—|-Oén€2).

+1
Imlles +2(v/1 = aZ+/(n = 2)o2 + 1+ an)es

The theorem is proved. O

Although the quantity |(c, m)| is usually nonzero for empirical data, it somewhat
measures how close it is from m to a true integer relation for a. So it can be seen
as output error. In this sense, Theorem [3.8 says that if a perturbation of the input
H,, is small enough, then the “output error” of PSLQ. can also be small. Roughly
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speaking, if we fix the termination condition €5 to be a tiny number, then the
“output error” is amplified by a factor at most C - |m]].

4. PSLQ, WITH EMPIRICAL DATA

Aiming to obtain m by PSLQ, such that |{a, m)| < &, we study how to determine
the error control parameters 1, €2, and 3 in this section.

4.1. Error control of PSLQ,.

Lemma 4.1. Let @ = (a1,...,a,) be an n-dimensional unit vector with |a,| =
max;{|a;|}, and let & be its approximation. Construct H, and Hs as in 21) for
a and &, respectively. If | — & < &, then it holds that

3 _
|H, — Hs|lr < 8n2||a —@||.

Proof. Let s; = /> p_; a3, let 5, = /> _. a3, let b, =(0,...,0,04,...,0q,), and
let b; = (0,...,0,a,...,0a,). It obviously holds that ||b; — b;|| < || — @]|. So, it
is obtained that |s; — 5;| = |||b:]| — ||b:]|| < ||bs — b;]| < || — &||. By the way, from
|an| = max;{|;|} and ||e|| = 1, it follows that |a,,| > ﬁ Thus, if la—&|| < ﬁ,
then it holds that |au,| > ﬁ

Recall that H, = (h; ;) and

Sif1 Y
> ifi =7y,
R if 4 i
hij = sy clse ifi> 7,
0 otherwise.

Let us consider the error of Si;fl :
;

_8i418i — SiSi+1 + SiSit1 — SiSiy1

Sit1  Sit1

Si+18i — SiSit1
Si Si S

8iSi

SiSi

Sit1|si — 54 " 5ilSit1 — Sit1] < |si — | " |sit1 — Sit1]

Si8; SiS; S; S;
2 _ 2 _ _
< Ja-a| < —lla-al <4vna—al,
3; |,
and then consider the error of %(@ > j):
J°7
;O . C_ti@j _ |aiaj§j§j+1 — diajsjsj+1|
$jSj+1  SjSj+1 8j8j+15j5+1
< ———— (58511 — aiajs; S| + iy Si — aiajs;sjp
8j8j+18j8j+1
+ \aiajsjsjﬂ - diaj8j8j+1‘ + |541'Olj8j8j+1 - 5@@ij8ij1|)
4.1 T g
R I D
55841555541 Sj<97j+18j8j+1
b O oy | 4 3L oy
S38i+18555+1 S38i+18555+1
< |5, - sl \fié_g| \§j+{— sj+1l | @|ai_ ail | Joy — %l
Sj Sj Si+1 Si Sit1 Sj
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We need to estimate ‘ il First, if |aej| < |@&;|, then it holds that ‘O‘" < 1. When
laj| > |@;], it follows that

3=+ - +ap =0o] +20a50; + Aot +ad,, + -+ an

J ny

so we have
n

> ai —2Aallas] > ak - 2|Aqy.
k=j+1
Note that |a,| > 2\/— and |Aa;| < g- when |a—al| < g, which indicate 53 —a? >
a2 —2|Aqj| > £ — & =0. So it is proved that

(4.2) sl
5
when ||o — & < g-. Applying [@2) to (I) gives
L B L |5, =5 il el S = sl oyl lai = Gal | oy — 4
SjSi+1 SjSj+1 Sj 55 Sj+1 5 Sji+1 Sj
B sl S = sjal | lea =il oy — a6
S Sj+1 Sj+1 5j
4 _ _
< v lle—af =8Vn|a-al.
2v/n

With the assumption of || — &| < -, it follows that

n(n—1 _ _
I H — ol < M\/% (=Dl ] < 8072 — ai].
The proof is finished. O

Now we construct the input H, of PSLQ. from empirical data &. In this paper,
we restrict ourselves under exact arithmetic, i.e., we take H, = H5. Applying this
to Theorem yields the following particular error control strategy.

Theorem 4.2. Let o € R™ be a unit vector with |ay,| = max;{|as|}, and let € > 0.
Suppose a has an integer relation with 2-norm bounded from above by M. Given

empirical data & with
3

—all<ea < ——
loe—all <& < Toarena7

if PSLQ. with

g
g2 <
2 2C oy,
2(y/(n—2)o2 +1+ay,)

returns m with |/m| < M, then |(a, m)| < &, where C = and

M > 0. '
Proof. From Lemma [T] it holds that

— €

H,—H,|r=|Hys— H, .

[ =1 Ir < 51

Then Theorem [3.8] implies
€ E €

(43) |(a,m>|<C’(Mm +Ozn52) <§+§:€
The theorem is proved. (Il
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4.2. Some remarks. It should be noted that the results presented in Theorems
B B and can be applied not only to the standard PSLQ algorithm, but also
to the multipair variant of PSLQ [9, Section 6]. The reason is that all the proofs of
these theorems are independent of the swap strategy. The multipair variant can be
seen as a parallel version of PSLQ, in which several pairs of rows of the matrix H
are swaped simultaneously, and it is much more efficient than the standard PSLQ
and hence utilized in almost all of the applications in practice. We also note that
the iteration bound in Theorem may not hold for the multipair variant; we refer
to [9, page 1729] and [12] Section 3] for this topic.

It is not difficult to verify that Theorem still holds for €1 < 755~ and

g2 < % for any 0 < w < 1. The error control strategy given in Theorem
just simply takes w = 1/2. Examples in the next section show the effectiveness of
this strategy, but the optimal choice for w is beyond the scope of this paper.

Figure [Tl shows the relationships among the main notation of this paper. In this
figure, the solid lines indicate the routine of PSLQ, for empirical input data & with
la — @] < e1. According to Theorem 2] if the returned m by PSLQ. satisfies
|lm|| < M, then we can guarantee that |(m, a)| < e.

€1 Eq. 1) = __ PsLQ
@ -t o Ha 3 Ma T

FIGURE 1. An illustrative picture of relationships among the main notation

As mentioned previously, high precision arithmetic must be used for almost all
applications of PSLQ. In practice, Bailey (see, e.g., [0]) suggested that if one wishes
to recover a relation for an n-dimensional vector, with coefficients of maximum
size log,y G decimal digits, then the input vector a must be specified to at least
nlog,, G digits, and one must employ floating-point arithmetic accurate to at least
nlog,, G digits. However, there seems no theoretical results about how to decide the
precision generally. Theorems 3.8 and in this paper can be seen as theoretical
sufficient conditions for PSLQ with empirical input data. We show in the next
subsection that these theoretical results indeed give some effective strategies for
the input data precision and the termination condition in practice.

4.3. Numerical examples. In this subsection, we give some examples to illustrate
our strategy of error control based on Theorem .21 We use our own implementation
of PSLQ. in Maple, which takes the running precision Digits, a target accuracy e,
and an upper bound on the coefficients of the expected relation G as its input. We
use M = /nG as its 2-norm bound and fix Digits :=200 and Digits :=600 for
the first two examples and the third example, respectively, so that it is sufficient to
guarantee the correctness and that it can mimic the exact real arithmetic.
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20 - o Yy = €1, correct output

-4 Yy = g9, correct output
18 1 o y = €1, incorrect output
16 - - Yy = €9, incorrect output
14

12

[— logyq Y]
=

FIGURE 2. Error control strategy for Example

Example 4.3 (Transcendental numbers). Equation (69) of [6] states that B =
(t,1,In2,In?2, 72) € R® has an integer relation m = (1, 5,4, —16, 1), where

1,1 N2 N2 N2
= G) () (553) e
o Jo \z+1 y+1 zy+1

We try to recover this relation for ac = 8/||8||.

Because of involving transcendental numbers, we can only obtain the empirical
data of . Suppose that the maximum of the coefficients is bounded by G = 16
and that the gap bound for this example is 1075, (In fact, by exhaustive search,
we can obtain a gap bound that is about 6.37 x 1076.) Thus, the target precision
¢ is set as ¢ = 1075, It means that we want to find an integer vector m such that
|(a, m)| < & =1075. According to Theorem [£2] we obtain that e, ~ 2.60 x 1071
and g9 ~ 8.39 x 1078, We run this example in the computer algebra system Maple.
After 30 iterations of PSLQ, the procedure returns a relation m = (1, —5,4, —16, 1),
which is an exact integer relation for c.

If we do not know a gap bound on |[(m,a)|, we can test ¢ = 107¢ for i =
1,2,...,10, where the corresponding ; and €5 are decided according to Theorem
As shown in Figure 2 for i = 1,2,3,4, no correct answer is obtained, but
for 5 < i < 10 the procedure always returns the same relation m. Further, the
difference between [—log;ye1]| and [—log,ye2] does not change for different e.

Bailey’s estimation is [nlog;, G| = 7 decimal digits that indicates e; < 1077,
which is relatively compact for the above setting. However, Bailey’s estimation still
has the following drawbacks. For one thing, Bailey’s estimation does not suggest
when the algorithm terminates, i.e., how to choose €2, while Theorem suggests
the quantity that 5 should be larger than e;. This is consistent with intuition:
the error would be amplified by exact computation with empirical data as input.
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In fact, if we do not have the error control strategy as indicated by Theorem [£.2] we
can only use a trial-and-error approach to decide the termination precision e, since
the procedure may miss the correct answer for an incorrect eo, even with relatively
high precision.

For another thing, if we do not know such a tight bound on the maximum
coefficient of the relation, instead, for example, we only know G < 10°. For the
same £, we now have £; ~ 4.16x 107! and &, ~ 8.39x 1078, for which our procedure
work correctly, while at least [nlog;y G| = 25 decimal digits is needed according
to Bailey’s estimation, which implies &; < 1072%. For this example, by Bailey’s
estimation, [—log;ye1] increases linearly with [log;y G|, whose slope is n = 5.
According to Theorem 2 [—log,,e1] also increases linearly with [log,, G, but
the slope is only about 1. In fact, according to Theorem [£.2] we have [—log;,e1] >
[log G + log,,(16n°/2C) — logy, €].

Example 4.4 (Algebraic numbers). Let a = (v/3 + v/2)7!, and let « be the
normalized vector of (a?°,a!? ... a,1). In this example, we try to recover the
coefficients of the minimal polynomial of a. Suppose that we know in advance that
the oo-norm of the integer relation is at most G = 7440.

200 + ®Y = €1, correct output
Ay = g9, correct output
180 1 oy = €1, incorrect output
160 4 2y = €9, incorrect output

0 20 40 60 80 100120 140 160 180 200
[—logyg €]

FIGURE 3. Error control strategy for Example 4]

Bailey’s estimation suggests that a should be computed with at least [nlog,, G| =
82 exact decimal digits, which implies £; < 10732, However, PSLQ, does not return
a relation with coefficient bounded by 7440. This may be caused by the fact that
Bailey’s estimation is not sufficient to compute an integer relation.

Let us set € = 10789 so that €; ~ 1.73 x 107® and €5 ~ 4.99 x 107”1, and our
procedure returns a relation

m = (49, —1080, 3960, —3360, 80, —108, —6120, —7440,

—80,0, 54, —1560, 40, 0,0, —12, —10,0,0,0, 1)
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after 3525 iterations. It can be checked that this relation corresponds exactly to
the coefficients of the minimal polynomial of «.

For the same e and &1, if we do not set e, as suggested by Theorem [£.2] say,
€9 ~ 1079 then the procedure misses the correct relation.

If we set ¢ = 10738, our procedure does not return the correct answer. This
can be seen as evidence that the sharp gap bound is near 1078, We also test for

e = 10~(100-109) with 4 = 1,2,...,9. Each of these tests does not return the correct
answer. If we set € more strictly, which means having more precision, for example
e = 10~ (100+109) with 4 = 1,2,...,8, the procedure always works well and returns

the same m as above. The quantities [—log;ye1] and [—log;ye2] obtained from
Theorem are as shown in Figure

Example 4.5 (Algebraic numbers with higher degree). Let a = (v/3+v/2)~!, and
let o be the normalized vector of (a*?,a*® ... a,1).

For this example, the dimension is 50 and the co-norm of the integer relation is
G = 966420105. Bailey’s estimation suggests that a should be computed with at
least [nlogyy G| = 450 exact decimal digits, which implies £; < 107%5°, Under this
setting, PSLQ, fails to find the correct relation. The reason is that this precision
is not enough to achieve the gap bound. In fact, according to our tests, the gap
bound for this example is about 107%%7; see Figure @ This shows that Bailey’s
estimation is not sufficient, but still necessary.

600 4 ®Y = €1, correct output
Ay = g9, correct output
580 7 oy = €1, incorrect output
560 1 a4y = €9, incorrect output,

540 1
520 1
500 1
480
460 -
440 1
420

400 T T T T T T T T T 1
400 420 440 460 480 500 520 540 560 580 600

[—1logy]

[—logyg ]
FIGURE 4. Error control strategy for Example

When we set ¢ = 10747 so that ; ~ 1.61 x 107°92(< 107%%) and &y ~
3.47 x 107489 according to Theorem FZ, then our procedure returns the correct re-
lation corresponding to the coefficients of the minimal polynomial of o after 45385
iterations. Furthermore, the similar phenomenon shown in Figures 2] and [] also
appears for this example. When we set e smaller than 107487 (and set &1 and &3
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accordingly), PSLQ, always returns the same integer relation, as shown in Figure [
This shows that our error control strategy given in Theorem [£.2] plays an important
role for the correctness of PSLQ..

From the examples above, we have the following two observations. Firstly, if one
does not decide €1 and e by the error control strategy in Theorem 2] then one
may miss the correct relation. Secondly, with an effective ¢, we always obtain the
same relation if we use the error control strategy in Theorem This observation
may be taken as strong evidence that the returned relation is a true integer relation.
In fact, assume that for all arbitrarily small € > 0, PSLQ, always returns the same
relation. Then the relation must be an exact integer relation in the sense that
PSLQ. — m for ¢ — 0. However, if no gap bound is known, determining whether
the returned relation is an exact integer relation within finite steps is still open.

5. DISCUSSION AND CONCLUSION

In this paper, we give a new invariant relation of the celebrated integer relation
finding algorithm PSLQ, and hence introduce a new termination condition for PSLQ..
The new termination condition allows us to compute integer relations by PSLQ, with
empirical data as its input. By a perturbation analysis, we disclose the relationship
between the accuracy of the input data (e1) and the output quality (e, an upper
bound on the absolute value of the inner product of the intrinsic data and the
computed relation) of the algorithm. This relationship still holds for the multipair
variant of PSLQ. Examples show that our error control strategies based on this
relationship are very helpful in practice.

We note that all results presented in this paper are under the exact arithmetic
computational model. Although we obtain some results about the error control
for applications, we did not analyze the algorithm under an inexact arithmetic
model, such as floating-point arithmetic. However, we believe that the results in
this paper, say Theorem .8 would be indispensable in the analysis of a numerical
PSLQ algorithm.

In fact, it is an intriguing topic to design and analyze an efficient numerical PSLQ
algorithm. For the moment, the main obstacle is to give a reasonable bound on the
entries of unimodular matrices produced by the algorithm. Now, we can only give
an upper bound that is double exponential with respect to the working dimension,
and hence resulting in an exponential time algorithm. Thus, it is a very interesting
challenge to obtain an upper bound similar to, e.g., [21, Lemma 6], where the upper
bound is of a single exponential in the dimension.
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APPENDIX A. PROOF OF LEMMA [B.3]

We consider the following submatrix of H,, denoted by H;. ,_1:

= 0 0 e 0 0
—QaQ s3
o - 0 0 0
—az0 —azaz S4 A 0 0
S182 5283 S3
— 4] — 402 — Q43 O O
H[l‘.n—l] = $182 5283 8384
—Qp_201 —Qp_202 —Qn_s03 Sn—1 0
5152 5283 8384 Sn—2
—Qn-—101 —Qn—1Q2 —Qn—103 .. —Qn—1%n—2 Sn
S182 5283 8384 Sn—28n—1 Sn—1
By linear algebra, its inverse is
2 0 0 0 0
s2
0y 82 0 0 0
8283 83
o103 Qo3 S3 0 O
8384 5384 S4
a0y oy Q3Qg
-1 _ 0 0
(A1) H, , = 5455 5455 5455
10 —2 Q20 —2 30n—2 . Sn—2 0
Sn—28n—1 Sn—28n—1 Sn—28n—1 Sn—1
Q1%n—1 Q20n—1 Q3%n—1 .. An—2Qn—1 Sn—1
Sn—18n Sn—18n Sn—15n Sn—18n Sn

In the following, we compute the F-norm of H [I.l.n—l]' First, consider the jth

column of H, [7 1

1..n71]:
1 1
52 < a?a? 52 j a2
N2 = d jok 7] 2 k
157" = =—+ Sa =3 T T2
52 525 52 525
i1 i1 SkSk J41 kg1 SESk+1
1
53 2 N 1 1 53 5, 1 1
=2 +aj E:(SQ _3_2)252 +aj(8_2_82 )
41 v Skt Sk 41 no Sin
242 o2 &2 2 2
R TR L
82 2 s a2 o2’
Jj+1 n Jj+1 n n

so we have

n—l anl ag
1 - =1
”H[l.l.nfl]H%‘ = Z IH Y2 =(n—1)+ Jaz j
i=1 2
o — o o2
=D g =

In addition, we can compute the F-norm of Hy; , ) as follows:

n—1 n—1
| Hpon g3 = 3 =5 2290 (a2 3
i1 SiSit1 i1 SiSit1
n—1
1 1 1 1
=(n—-1)—a? NV=(n-1)—a? (= —
-l Y ) = ) el )
a2 a2
(=1 -1+ - = (n—2)+ 2n_
(=D GE = T T e

as claimed in Lemma [3.3]
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APPENDIX B. PROOF OF THEOREM

Define the II function after exactly k iterations as follows:

n—1 —J
hmax k " ]
- H max <hi,i(k)| ; n—(l )> ’
i=1 !

where hpax (k) is the maximum of |h; ;(k)| for i =1,2,. ..
that

,n—1. It obviously holds

- :ljllmax <|hz‘,i(k‘) ; h:ZX(lk)>n_j = (hLX(k))

n(n—1)
2

,},nl

First, we assert that Amax (k) > Amax(k + 1). Size reduction does not affect h; ;(k),
and neither does hpax. Let us consider the change of hp.x in the Bergman swap.
Let the Bergman swap occur at the rth row. For the case of r < n — 1, after the
Bergman swap, we have that

1
e (ke + 1| < —Jhrg (k)] < [ (K)] = max (K)
|hrr(k)hr+1 T+1(k)|
\/hr+1 r ) + h'r‘Jrl r+1(k)

|hr+1 T+1(k + 1)| < ‘hnr(k” = hmaX(k)

and the others are unchanged, i.e., h;;(k+1) = h;;(k) for i = 1,...,7 — 1,7 +
1,...,n—1. It shows that hpax(k) > Amax(k+1) for r < n—1. For the case of r =
n — 1, after the Bergman swap, it holds that |h,—1,—1(k+1)| < %|hn,1,n,1(k‘)\ <
hmax(k) and the other h; ;’s are unchanged. Therefore it is obtained that hmax (k) >
hmax(k+1) for r =n — 1.

Second, we show that II(k) > 7II(k+1). Let the Bergman swap occur at row r.
Case r =n — 1: We have

max (K
(k) max{ |l 101 (B)], "2 1.0 1.(K)
0+ 1) ™ ma{n 11 (b + DI, =5} max{ihy10(h)], 20
et 2oz when fiy i (k) > el
=) Bt > et > 5 > 1 otherwise,
~n— 1 ~n— 1

where we used Y hy,—15-1(k) > Amax(k) and hp—1n—1(k+ 1) = hyo1 (k).
Casesr <n—1: Let

maxk maxk
max{ | (k)|, “22x()} max{|hy 1,541 (k)], 22}

max{|hy,(k + 1)|, M} a max{|h,41+1(k + 1)], Pmax k+1)}
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Then H(k+1 - A(AB)" " 1 Set n= hr T(k) A= hr-i-l r+1( ) /8 = hr+1 r(k) and
§ = /B2 + A2. Noticing that hmax(k) > hmax(k + 1) and |n] > fmax hoax(k) vields

hmax (k

. maX{lhrr( B ( )} _ 9]

max{|h,.,(k + l)l Pmax ()} ppaxs, mes(t5H) y
(B.1) %:;ZT, When(szw7
B2 A2 5

— 2tz

n—1 n
hma‘x’,z‘kf’l) = hxlﬂz(kﬂ) 2 lnl,ax(k) >~ > 17, otherwise.
Y-
max{ ||, hmax(k)} )

And then, we consider AB = A ] hxz:):(kﬂ)} When |A] > e, it s easily

ax{ Al InAl
deduced that § > |A| > m‘“‘( ) > m;};(frﬂ and 2L > ) > % Hence from
equation (B) it holds that

apoa Py o mo
| Il & Inl

When [A] < 222x(9 it holds that

hmax (k)
n—1
AB =A- t
max{ [nA] hmaX(k+1)}
5 0T qmT
hmasx (k) \ —
n—1 . < 1
Ay > A> 7> 1, if L < e D)
n—1
— ‘77‘ hmax(k) 5 hmax(k) mmx(kJrl)
= hmax (k) E T Y il v el 1, elseif § > e,
A- v‘";‘l = il hmax (k)
n - n . _qn-1 5 .
3 P UT) 2 > By > 1, otherwise.
T

Up to now, we have shown that AB > 1. Therefore

(k) L
———— = A[AB]"™" A .
Mhr1 AP AT
It is proved that
b (k;) n(n;n 1
max
(B.2) ( o <II(k) < =

From 7 > 1, we have

n(n—1)((n —1)log~y + log h,,.axw))
2log T

k<
From |y n—1(k)| < |hn—1,n—1(k)] < hmax(k), it always holds that Amax(k) > €2
before termination. Hence, we deduce that

1
- n(n —1)[(n —1)logy + log -]
- 2log T

)

which completes the proof.
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