
1390 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Homomorphic Matrix Operations Under
Bicyclic Encoding

Jingwei Chen , Linhan Yang, Wenyuan Wu, Yang Liu, and Yong Feng

Abstract—Homomorphically encrypted matrix operations are
extensively used in various privacy-preserving applications. Con-
sequently, reducing the cost of encrypted matrix operations is a
crucial topic on which numerous studies have been conducted.
In this paper, we introduce a novel matrix encoding method,
named bicyclic encoding, under which we propose two new algo-
rithms BMM-I and BMM-II for encrypted matrix multiplication.
BMM-II outperforms the stat-of-the-art algorithms in theory,
while BMM-I, combined with the segmented strategy, performs
well in practice, particularly for matrices with high dimensions.
Another noteworthy advantage of bicyclic encoding is that it
allows for transposing an encrypted matrix entirely free. A
comprehensive experimental study based on our proof-of-concept
implementation shows that each algorithm introduced in this
paper has specific scenarios outperforming existing algorithms,
achieving speedups ranging from 2x to 38x.

Index Terms—Secure matrix multiplication, fully homomor-
phic encryption (FHE), Single Instruction Multiple Data (SIMD),
bicyclic encoding.

I. INTRODUCTION

PRIVACY-PRESERVING computing or privacy-
enhancing technologies, capable of protecting data

privacy and fully exploiting data value, is an exceptionally
popular area of research. Fully Homomorphic Encryption
(FHE) enables computations to be performed on encrypted
data without the need for decryption [1], [2], and hence
offering a powerful tool for privacy-preserving computation.
Among the numerous privacy-preserving applications enabled
by homomorphic encryption, matrix operations emerge as
a core fundamental. Therefore, the importance of matrix
multiplication over encrypted data is self-evident. In this
paper, we investigate matrix multiplication over data encrypted
using an FHE scheme that supports SIMD (Single Instruction

Received 18 April 2024; revised 22 September 2024; accepted 22 Octo-
ber 2024. Date of publication 4 November 2024; date of current version
27 January 2025. This work was supported in part by the National Key
Research and Development Program of China under Grant 2020YFA0712303;
in part by the Natural Science Foundation of Chongqing under Grant
2022yszx-jcx0011cstb, Grant cstb2023yszx-jcx0008, and Grant cstb2023nscq-
msx0441; and in part by the Western Young Scholars Program of Chinese
Academy of Sciences (CAS). The associate editor coordinating the review of
this article and approving it for publication was Dr. Jun Zhao. (Corresponding
author: Linhan Yang.)

Jingwei Chen, Wenyuan Wu, and Yong Feng are with the Chongqing Key
Laboratory of Secure Computing for Biology, Chongqing Institute of Green
and Intelligent Technology, CAS, Chongqing 400714, China, and also with
Chongqing College, University of CAS, Chongqing 400714, China (e-mail:
chenjingwei@cigit.ac.cn; wuwenyuan@cigit.ac.cn; yongfeng@cigit.ac.cn).

Linhan Yang and Yang Liu are with the School of Information Science
and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
(e-mail: linhanyang@mails.cqjtu.edu.cn; liuyang13@cqjtu.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3490862

Multiple Data), such as the BGV [3] and B/FV [4], [5]
schemes for integer arithmetic, and the CKKS scheme [6] for
approximate arithmetic.

Since Gentry’s pioneering work [2], FHE has rapidly devel-
oped, giving rise to various schemes such as BGV [3], B/FV
[4], [5], CKKS [6], FHEW [7], TFHE [8], and numerous
optimizations like data packing for SIMD [9], bootstrapping
[10], [11], [12], [13], etc. However, homomorphic matrix
multiplication remains a bottleneck in practice. For example,
Huang et al. reported in [14] that it takes nearly 6 minutes for
an encrypted matrix multiplication with dimensions 2048 × 8
and 8 × 2048.

Almost all existing work about homomorphic matrix mul-
tiplication employed schemes that support SIMD, i.e., BGV,
B/FV, or CKKS. For these schemes, computational efficiency
is primarily influenced by two key factors. The first is multi-
plicative depth (including ciphertext-ciphertext multiplication
(Mul) and plaintext-ciphertext multiplication (CMul)), a metric
that directly impacts the computational efficiency of all known
FHE schemes. This is because more multiplicative depths
imply a larger ciphertext modulus or an increased number
of bootstrappings. The second is the number of required
ciphertext rotations (Rot) on the packed ciphertext. According
to our test, for the CKKS scheme implemented in Microsoft
SEAL [15], the efficiency ratio between a ciphertext rotation
and a ciphertext multiplication can be as large as 8 : 1. Similar
observations can be found in [16] as well. Consequently,
the primary objective of this paper is to optimize both the
multiplicative depth and the required number of ciphertext
rotations for encrypted matrix multiplication.

A. Related Work

Secure matrix multiplication has plenty of applications,
making it a highly active and impactful research area in
privacy-preserving computation. The subject offers diverse
perspectives for investigation, including secure multi-party
computation [17], [18], [19], [20], [21], information-
theoretically privacy [22], etc. Here, we mainly focus on
encrypted matrix multiplication methods based on FHE
schemes supporting SIMD, although there exist many other
algorithms, e.g., [23] and [24], based on a matrix version of
GSW [25].

A plaintext of an FHE scheme that supports SIMD is usually
an element in a certain polynomial ring, say R = Z[X]/〈XN +
1〉. Polynomials in R can be represented in two equivalent
ways. One is referred to coefficients-encoding, corresponding

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3768-3135

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1391

TABLE I
THE COST OF SLOTS-ENCODING ALGORITHMS FOR A (n,m, p) MATRIX

MULTIPLICATION OVER ENCRYPTED DATA, WHERE THE TWO
MATRICES TO BE MULTIPLIED ARE OF DIMENSIONS n × m

AND m × p, RESPECTIVELY, AND ` IS THE NUMBER
OF PLAINTEXT SLOTS

to the coefficient vector of the polynomial. The other is slots-
encoding, i.e., the polynomial evaluations at certain ` points,
where ` is the number of slots the FHE scheme supports.
Roughly speaking, all existing algorithms for encrypted matrix
multiplication can be categorized into two types, both of which
support SIMD operations.

1) Coefficients-Encoding Algorithms: Duong et al. [26]
generalize Yasuda et al.’s method for secure inner product
[27], [28], and present two algorithms for encrypted matrix
multiplication. Suppose that a ciphertext encodes a vector of
dimension at most `. Then the two algorithms of Duong et
al. support maximal dimensions of O(`1/2) and O(`1/3), and
require O(`1/2) and only one Mul, respectively. The drawback
of this method is its lack of efficiency in handling consecutive
matrix multiplications. Later on, Mishra et al. [29] extended
it to support k matrix multiplications successively. However,
the maximal dimension is limited only to O(`1/(k+1)), which
makes it impractical. Zheng et al. [30] recently proposed a
new framework for homomorphic matrix multiplication under
BGV, which supports consecutive matrix multiplication and
requires only constant Muls and CMuls, and O(log d) Rots for
square matrix multiplication of dimension d when d = O(3√N),
achieving the best theoretical complexity bound, where N is
the ring dimension used in BGV. Zheng et al. also presented
a Strassen variant [31] for matrices with large dimensions.
However, since their algorithm relies on a hypercube structure
of the plaintext space, it does not support B/FV or CKKS. In
addition, for all the coefficient encoded methods, to reuse par-
tial entries of the encrypted resulting matrix, we are typically
compelled to resort to extra operations for switching between
the coefficients and slots encoding, which may slow down the
computation.

2) Slots-Encoding Algorithms: There are also algorithms
that encode matrix data in evaluations of plaintext polynomi-
als, which naturally support consecutive matrix multiplication.
We summarize these algorithms in Table I. Halevi and Shoup
investigate linear transformation on encrypted vector [10],

[32], i.e., matrix-vector multiplication. Their methods can
be directly extended to matrix multiplication. Lu et al. [33]
and Wang and Huang [34] extended Halevi and Shoup’s
method for matrix-matrix multiplication based on the row-
order and column-order encoding methods, respectively.
Rathee et al. [35] considered an encrypted version of a matrix
multiplication algorithm presented in [43]. Jiang et al. pre-
sented an algorithm for matrix multiplication over encrypted
data in [36]. It uses SIMD operations and the technique
for linear transformation [10], [32]. A recent survey [44]
identifies Jiang et al.’s algorithm [36] as the state-of-the-
art for FHE-based matrix multiplication. Based on Jiang et
al.’s algorithm [36], Huang et al. [14] improved the block
matrix multiplication for rectangular matrices with special
shapes. Chiang [39] and Huang and Zong [40] presented a
scheme for non-square matrices, which can be considered as
a generalization and optimization of [35]. Zhu et al. [41]
have made further improvements based on the method in [40].
Jang et al. [37] presented an adapted CKKS scheme to support
data with tensor structure better and improved Jiang et al.’s
algorithm [36] in the number of required Rots and CMuls.
However, the security of Jang et al.’s variant of CKKS is based
on a non-standard hardness assumption called multivariate
polynomial learning with errors (m-RLWE). Rizomiliotis and
Triakosia [38] introduced a new method for matrix multiplica-
tion over encrypted data. This method fully leverages packing
techniques, reducing the required number of Muls to just one.
However, it only supports matrix dimensions `1/3.

3) Other Optimizations: In addition to optimizing the num-
ber of rotations, another optimization direction is to accelerate
Rot itself. For example, the hoisting technique proposed
in [10] optimizes scenarios involving multiple rotations on
the same ciphertext, and the double hoisting introduced by
Bossuat et al. [45] makes further progress. These techniques
were recently used to accelerate related matrix operations in
PCA (Principal Component Analysis) [46]. Gao and Gao [42]
construct a fully homomorphic encryption scheme, named
GMS, for matrices based on the n-secret LWE assumption
[47], which is suitable for matrix multiplication. For encrypted
matrices with large dimensions, the Strassen algorithm [31]
has been applied recently to this area in [30], [48], and [49].

B. Contribution

Let A and B be two matrices with dimensions n × m and
m × p, respectively. Denote by (n,m, p) matrix multiplication
the multiplication between A and B.

1) For Small-Dimensional Matrices: We prove the
following

Theorem 1: Let (n,m, p) be pairwise coprime integers and
` the number of slots that the FHE scheme supports.
• If ` > 2 · max{mn,mp, np}, there exists an algorithm

(BMM-I) that computes a homomorphically encrypted
(n,m, p) matrix multiplication within m ciphertext-
ciphertext multiplications (Muls), and 2(m + logdp/me+
logdn/me + 1) rotations on ciphertexts (Rots), and costs
only one Mul multiplicative depth.

• If ` > mnp, there exists an algorithm (BMM-II) that
computes a homomorphically encrypted (n,m, p) matrix

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

1392 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

multiplication with only one Mul and CMul, and at
most logdme + logdne + logdpe Rots, and costs one Mul
and one CMul multiplicative depth. In particular, if m
is a power-of-two integer, the algorithm can finish the
computation with only one Mul and at most logdme +
logdne+logdpe Rots, without CMul, and hence costs only
one Mul multiplicative depth.

Both BMM-I and BMM-II support all SIMD-supported FHE
schemes (e.g., BGV, B/FV, CKKS) and features the following:

a) The Required Number of Ciphertext Operations: As
indicated in Table I, BMM-I and BMM-II has their own advan-
tages on the number of ciphertext operations. In particular,
BMM-II requires only one Mul and O(log d) Rots without
CMul, better than all other existing algorithms in Table I.
Although a similar result can be achieved by Zheng et al.’s
algorithm [30], theirs only apply to BGV, not BFV or CKKS.

b) Multiplicative Depth: Both BMM-I and BMM-II can
achieve optimal multiplicative depth, i.e., only one Mul
depth. Compared to Halevi-Shoup’s method [10], [32], our
approach utilizes fewer ciphertexts. For instance, our compu-
tation results in a single ciphertext, while theirs produces p
ciphertexts.

c) Transpose for Free: Our algorithms rely on a novel
matrix encoding method given in Section III-A. As a benefit
of this encoding, the transpose of an encrypted matrix can be
computed for completely free; see Corollary 1. In previous
algorithms, e.g., [36], the transpose of an encrypted matrix
is reduced to a higher-dimensional linear transformation. This
feature is expected to accelerate those applications involving
matrix transpose, e.g., computing the covariance matrix in
PCA, backpropagation in deep learning, etc.

2) Matrix With High Dimension: BMM-I (resp. BMM-II)
has a limitation: It requires ` > 2 · max{mn,mp, np} (resp.
` > mnp). Assuming n ≈ m ≈ p gives n ≈

√
`/2 (resp.

n ≈ 3√
`), while Jiang et al.’s algorithm [36] supports encrypted

matrix multiplication of dimension
√
`. Thus, for handling

high-dimensional matrices in a block-wise manner, the number
of blocks would be a bit more than that of some existing
algorithms, e.g., Jiang et al.’s [36]. This may lead to a lower
efficiency of the block-wise algorithms based on BMM-I or
BMM-II. To address this problem, we fully exploit the prop-
erties of our novel encoding method (on which BMM-I and
BMM-II depend) and introduce a segmented version of BMM-I
for multiplying high-dimensional matrices (BMM-III), where
the utilization rate of slots achieves nearly 100%, similar to,
e.g., Jiang et al.’s algorithm. This leads to our second result:

Theorem 2: Assume that (n,m, p) are pairwise coprime
integers and ` is the number of slots the FHE scheme sup-
ports. Then there exists an algorithm (BMM-III) that computes
the homomorphically encrypted (n,m, p) matrix multiplication
within m · d np

`
e ciphertext-ciphertext multiplications (Mul), and

2m ·d np
`
e rotations on ciphertexts (Rot), (4 · d np

`
e+ 2)m+n+ p

plaintext-ciphertext multiplications (CMul), and costs only one
Mul and one CMul multiplicative depth.

As a consequence, BMM-III reduces the number of Rots
by a factor 1

3 and saves one depth of CMul compared with
the state-of-the-art algorithm for high-dimensional encrypted
rectangular matrices [14]. Furthermore, it depends on a

so-called segmented matrix multiplication, which is different
from the traditional block matrix multiplication.

3) Experimental Study: We implement all BMM-I,
BMM-II and BMM-III with CKKS in SEAL [15],
including the naı̈ve (textbook) block version and the
Strassen [31] version of BMM-I as well. The code is
available at https://github.com/hangenba/bicyclic mat mul.
A comprehensive experimental study demonstrates the
performances of these algorithms and identifies how to select
different algorithms for different cases to achieve optimal
efficiency. In particular, our implementation of BMM-III can
compute a (2048, 8, 2048) encrypted matrix multiplication
in about 81s, achieving a 2.6x speedup compared with the
state-of-the-art algorithm for rectangular matrices [14], and
for a task with dimension (1024, 1024, 1024), it costs about
1200s, 5x faster than the block version of Jiang et al.’s
algorithm [36]; BMM-II can compute a (15, 16, 17) encrypted
matrix multiplication in about 13ms, about 16x faster than
the algorithm presented in [38]. SegLKS (obtained from
applying the segment strategy to an algorithm presented
by Lu et al. [33]) with some optimizations can compute a
(32, 33, 13847) encrypted matrix multiplication within 8.24s,
about 38x faster the block algorithm based on [36].

C. Technique Overview

Our results mainly rely on two techniques: bicyclic encod-
ing for matrices and segmented matrix multiplication.

1) Bicyclic Encoding: We first define a novel encoding map
that identifies an n × m matrix as a vector of dimension mn,
provided n and m coprime. We call it the bicyclic encoding,
which can be roughly viewed as an extension of the diagonal
vector of a matrix employed in Halevi-Shoup’s algorithm [32].
It follows from the Chinese Remainder Theorem (CRT) that
the coprime restriction on n and m guarantees that Z/(mnZ) �
Z/(nZ)⊗Z/(mZ), which implies that a single vector is enough
to traverse all elements of an n × m matrix. For instance, the
bicyclic encoding for

A =

�
0 1 2 3 4
5 6 7 8 9

�
and B =

0BBBB@
A B C
D E F
G H I
J K L
M N O

1CCCCA (1)

are a = (0, 6, 2, 8, 4, 5, 1, 7, 3, 9) and b = (A, E, I, J, N,
C, D, H, L, M, B, F, G, K, O), respectively. In particular, the
k-th entry of a for k = 0, 1, . . . , 9 is the (i, j)-entry of A with
i = k mod 2 and j = k mod 5.

Let A and B be two matrices to be multiplied, with
dimensions (n,m) and (m, p), respectively, satisfying (n,m, p)
pairwise coprime and m > max(n, p), where the latter con-
dition is just for simplicity and will be removed in our
main algorithm. Assume that vectors a and b are obtained
via the bicyclic encoding of A and B, respectively. Then
the bicyclic encoding of the resulting matrix X = AB is
exactly

P
0≤i<m ai � bi, where � denotes component-wise

multiplication, and ai and bi are of dimension np obtained
by rotating the original a and b, respectively. Taking A and
B as in Eq. (1), i.e., (n,m, p) = (2, 5, 3), we give in Table II

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hangenba/bicyclic%5Fmat%5Fmul

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1393

TABLE II
AN ILLUSTRATIVE EXAMPLE FOR ALGORITHM 1, WHERE sa (RESP. sb) IS

THE STEP SIZE FOR ROTATING a (RESP. b) TO THE LEFT

an illustrative example for a matrix multiplication algorithm
(Algorithm 1) under bicyclic encoding. We should note that
the number of rotation positions for ai and bi is nontrivial;
see Section III-B for details. Clearly, this algorithm requires 5
component-wise vector multiplications and 8 vector rotations.

2) Segmented Matrix Multiplication: For matrices with
high dimension, the usual approach involves block recursive
algorithms such as the Strassen algorithm [31]. However,
when applied to encrypted matrix multiplication, using a
recursive algorithm leads to a significant memory overhead,
while rewriting the recursive algorithm into a loop increases
the required multiplication depth. To address this problem, we
introduce a technique called segmented matrix multiplication.

The basic idea of segmented matrix multiplication is to
implement encrypted matrix multiplication strictly following
the plaintext algorithm for matrix multiplication under bicyclic
encoding. Continuing with the matrices from equation (1) as
an example, suppose the number of plaintext slots ` = 2.
Then, the bicyclic encoding of A will be encrypted into five
ciphertexts (ct.ai)0≤i<5 corresponding to encryptions of (0, 6),
(2, 8), (4, 5), (1, 7) and (3, 9). The primary task then becomes
how to perform rotations on these ciphertexts. To fulfill
this function, we design a subroutine called Long Rotation
(LongRot). For instance, running a LongRot on (ct.ai)0≤i<5
with step size one (i.e., rotating one position towards left)
returns ciphertexts of (6, 2), (8, 4), (5, 1), (7, 3) and (9, 0).
Based on LongRot, we present BMM-III, which supports high-
dimensional encrypted matrix multiplication. For encrypted
rectangular matrix multiplication, BMM-III reduces the number
of Rots by a factor 1

3 and saves one CMul depth, com-
pared with the state-of-the-art algorithm [14]. The experiment
in Section VII shows that BMM-III is efficient for high-
dimensional matrix multiplication. Applying the segmented
technique with several optimizations to an algorithm in [33]
leads to an algorithm SegLKS requiring the least number of
Rots asymptotically among all existing algorithms.

Outline: In Section II, we provide the necessary preliminar-
ies. In Section III, we introduce the bicyclic encoding method
and discuss matrix operations under this encoding, including
matrix transpose, matrix multiplication, and switching between
bicyclic encoding and the commonly used row/column encod-
ing. In Section IV, we present the encrypted version of the
aforementioned matrix multiplication algorithms and analyze
their cost. In Section V, we present the encrypted segmented
matrix multiplication and apply the segmented strategy to Lu
et al.’s algorithm [33] in Section VI. We present a compre-
hensive experimental study in Section VII and conclude with
Section VIII.

II. HOMOMORPHIC OPERATIONS

A typical FHE scheme consists of the following algorithms:
• Setup(1λ). Given a security parameter λ, output parms.
• KeyGen(parms). Output a secret key sk = s and the

corresponding public key pk. (For convenience, we also
let pk include one or more evaluation keys.)

• Encpk(b). Given a message b ∈ M, output a ciphertext
c ∈ C, where M and C are the plaintext space and
ciphertext space, respectively.

• Decsk(c). Given c ∈ C as input, output b ∈M.
• Evalpk(f , (c1, · · · , ck)). Given a function f in k variables,

and (ci)i≤k with ci ← Encpk(bi), output c ∈ C such that
Decsk(c) , f (b1, · · · , bk) holds with negligible probabil-
ity.

We omit pk or sk for simplicity without ambiguity. An FHE
scheme is said to be secure if it is IND-CPA secure. The
security of almost all existing FHE schemes is based on the
assumptions of LWE [50], RLWE [51], or their variants.

Now we recall some homomorphic operations of an SIMD-
supported FHE scheme. For convenience, we take CKKS
[6] as an example. In CKKS, the plaintext space is M =

Z[X]/〈XN + 1〉 =: R while messages are complex vectors in
C` with ` = N/2, where N is a power-of-two integer. The
ciphertext space of CKKS is C = R/qR, where q is the cipher-
text modulus, a large integer. The restriction of the canonical
embedding R[X]/〈XN + 1〉 → C` on R maps m(X) ∈ R into
m ∈ C` by evaluating m(X) at the primitive 2N-roots of
unity ξ j = ξ5 j

for 0 ≤ j < `. The inverse of the canonical
embedding encodes a message m as a plaintext m(X). Thus,
CKKS naturally supports SIMD operations, i.e., performing an
operation on a ciphertext corresponds to performing the same
operation on ` = N/2 entries of m in parallel. Each entry of
the message m ∈ C` is called a plaintext slot.

For x = (xi)0≤i<` and y = (yi)0≤i<`, let ct.x and ct.y be
the ciphertext encrypted by CKKS under the same public key.
CKKS supports the following basic operations:
• Add(ct.x, ct.y): Dec(Add(ct.x, ct.y)) = x + y.
• Mul(ct.x, ct.y): Dec(Mul(ct.x, ct.y)) = x � y, where � is

for component-wise multiplication.
• CMul(m, ct.x): Dec(CMul(m, ct.x)) = m� x, where m is

a message in C`; for m ∈ C, CMul(m, ct.x) is a special
case of CMul(m, ct.x) with m = (m, . . . ,m).

• Sl[i, j](ct.x) convert a ciphertext ct.x = Enc(x0, . . . , x`−1)
into a ciphertext that encrypts (0, xi, xi+1, . . . , x j, 0),
equivalent to CMul(m, ct.x) for m = (0 ∈ Zi−1, 1 ∈
Z j−i+1, 0).

• Rotk(ct.x) convert ct.x = Enc(x0, . . . , x`−1) into a new
ciphertext Enc(xk, . . . , x`−1, x0, . . . , xk−1).

III. BICYCLIC ENCODING FOR MATRICES

In this section, we introduce a novel encoding method for
matrices, disclose an intriguing property of this new encoding
for matrix transpose, and present two algorithms for matrix
multiplication under this new encoding.

To this end, we fix some notations. Let A ∈ Rn×m and
B ∈ Rm×p be two matrices over some ring R ⊆ C. Denote
by X ∈ Rn×p the resulting matrix of their multiplication,

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

1394 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

i.e., X = AB. The transpose of a matrix A is denoted by
AT. Let [i]k be the non-negative representation of the residue
class of i in Z/(kZ). All indices of vectors and matrices
start from 0 unless otherwise specified. For an integer k,
we define a rotation of a vector v = (vi)0≤i<n ∈ Rn as
ρk(v) = (v[k]n , v[k+1]n , . . . , v[k+n−1]n) ∈ Rn, i.e., ρk(v) rotates v
to the left by [k]n positions.

A. Bicyclic Encoding

Let A = (ai, j) ∈ Rn×m be a matrix. Define a map
ϕr : Rn×m → Rr with a positive integer r ≤ m · n as follows:
ϕn,m,r(A) = (a[0]n,[0]m , a[1]n,[1]m , . . ., a[r−1]n,[r−1]m). In particular,
if gcd(n,m) = 1 then the elements of ϕn,m,n·m(A) ∈ Rn·m

exactly traverse each element of A once. The reason is that the
indices of the resulting vector are decided by the map k 7→ (k
mod n, k mod m), which is an isomorphism between Z/(mnZ)
and Z/(nZ) ⊗ Z/(mZ) by CRT, provided gcd(n,m) = 1.

We call ϕn,m,n·m(A) the bicyclic encoding of A, denoted by
d(A). For ` ≥ m · n, the bicyclic decoding map ψ`,n,m : R` →

Rn×m that maps a vector x ∈ R` to a matrix X = (Xi, j) with
Xi, j = xk and k = [i · t · m + j · s · n]n·m, where (s, t) is a pair
of Bézout coefficients for (n,m), i.e., two integers such that
s ·n+ t ·m = 1. In particular, for the bicyclic encoding d(A) =

(dk)0≤k<n·m of a matrix A ∈ Rn×m we have ψn·m,n,m(d(A)) = A.
The following are some remarks on bicyclic encoding:
• In bicyclic encoding, the traversal of row and column

indices of A ∈ Rn×m forms two different cycles: one
modulo n and the other modulo m. This is where the name
comes from. In fact, we can easily generalize the bicyclic
encoding to d-cyclic encoding for d multidimensional
arrays (tensor) A ∈ Rn1×···×nd if n1, . . . , nd are pairwise
coprime, since CRT still holds in this case.

• The bicyclic encoding for matrices can be viewed as
an extension of the diagonal vectors [52, Fig. 1-35]
employed in Halevi-Shoup’s algorithm [32]. The primary
difference lies in the fact that diagonal vectors are defined
for square matrices, and a d-dimensional square matrix
has d diagonal vectors. In contrast, the bicyclic encoding
presented in this paper is effective for matrices with
coprime dimensions, and the bicyclic encoding of a
matrix is exactly a single vector.

• For a matrix A ∈ Rn×m with (n,m) coprime, the first
component of d(A) is the (0, 0)-entry of A, which can
actually be adjusted to start from any entry of A.

B. Matrix Multiplication Under Bicyclic Encoding

Now we present two algorithms for matrix multiplication
under bicyclic encoding.

In Step 4a and 4b, the step size of rotations should be
modulo mn and mp, respectively. In Step 4b, the step size
of rotation is i(rm − n) with p | (rm − n) instead of ip.
This nontrivial condition plays a key role in the proof of the
correctness of Algorithm 1.

Proposition 1: Algorithm 1 is correct. It requires at most
2(m + logdp/me + logdn/me + 1) vector rotations and m
component-wise vector products.

Proof: Since (m, p) are coprime, n can be represented as
an integral linear combination of m and p, which guarantees
the existence of r in Step 3. Now we assume that (s, t) is a
pair of Bézout coefficients for (n, p). Then according to the
definition of bicyclic decoding, the (i, j)-element of X is xk =P

0≤l<m al,k · bl,k, where xk, al,k and bl,k are the k-th element
of x, al, and bl, respectively, and k = [i · t · p + j · s · n]np.
Furthermore, we have xk is equal toX

0≤l<m

al,k · bl,k

=
X

0≤l<m

a[k−l·n]n,[k−l·n]m · b[k+l(r·m−n)]m,[k+l(r·m−n)]p (2)

=
X

0≤l<m

a[k]n,[k−l·n]m · b[k−l·n]m,[k+l(r·m−n)]p (3)

=
X

0≤l<m

ai,[k−l·n]m · b[k−l·n]m, j (4)

=
X

0≤l<m

ai,l · bl, j. (5)

Eq. (2) follows from the definitions of bicyclic encoding and
the rotation operator, and the construction of a and b in Step
2 of Algorithm 1. Eq. (3) easily follows from the modulo
arithmetic. Eq. (4) follows from the fact that [k]n = i and
[k + i(r ·m− n)]p = j. In fact, according to the definition of k,
there exists an integer q such that k = i·t ·p+ j· s·n+q·n·p. So
we have [k]n = [i·t ·p]n = i because of s·n+t ·p = 1. Similarly,
[k + i(r ·m− n)]p = [j · s · n + i(r ·m− n)]p = j, where the last
equality follows from s ·n+ t · p = 1 and p | (r ·m−n). To prove
(5), we only need to prove that the set {[k − l · n]m : 0 ≤ l < m}
forms a complete residue system modulo m. Assume that it is
not the case, i.e., there exist l and l′ such that 0 ≤ l′ < l < m
and [k− l ·n]m , [k− l′ ·n]m. This assumption implies that there
exists a nonzero integer u such that k− l ·n+m ·u = k− l′ ·n, so
we have (l− l′)n = m ·u. Recalling gcd(n,m) = 1, it gives n | u,
i.e., there exists a nonzero integer v such that u = n · v. Hence,
(l− l′) = m · v, which implies |l − l′| > m. This contradicts with
0 ≤ l′ < l < m, which completes the proof.

Algorithm 1
Input: A ∈ Rn×m, B ∈ Rm×p, (n,m, p) pairwise coprime.
Output: Matrix X = AB.

1) Initialize a := d(A), b := d(B), and x := 0 ∈ Rn·p.

2) Update a :=

dp/me times‚ …„ ƒ
(a, . . . , a) and b :=

dn/me times‚ …„ ƒ
(b, . . . , b).

3) Compute the smallest positive integer r satisfying r·m−n >
0 and p | (r · m − n).

4) For 0 ≤ i < m do
a) Set ai := ρ−i·n(a), update ai as its first np entries.
b) Set bi := ρi·(r·m−n)(b), update bi as its first np entries.
c) Update x := x + ai � bi.

5) Decode X := ψnp,n,p(x).

The for loop of Algorithm 1 requires 2m−2 vector rotations
and m vector Hadamard products, and Step 2 requires at
most 2(logdp/me + logdn/me + 2) extra vector rotations (see
Proposition 4), which completes the proof. �

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1395

Definition 1: For c = (ci)i ∈ Rn and an integer k with k
dividing n, the segment-sum of cwith lengthk is defined to be
s = (si)i ∈ Rk with si =

P
0≤ j<n/k c j·k+i.

Now we propose the second matrix multiplication algorithm
(Algorithm 2) under bicyclic encoding.

Proposition 2: Algorithm 2 is correct. It requires at most
logdne + logdme + logdpe vector rotations and only one
component-wise vector product of dimension mnp.

Algorithm 2
Input: A ∈ Rn×m, B ∈ Rm×p, (n,m, p) pairwise coprime.
Output: Matrix X = AB.

1) Initialize a := d(A) and b := d(B).
2) Set a := (a, . . . , a) ∈ Rmnp, b := (b, . . . , b) ∈ Rmnp.
3) Compute x := a � b.
4) Compute the segment-sum of the vector x with length np.
5) Decode X := ψmnp,n,p(x).

From the perspective of matrix multiplication in plaintext,
both Algorithm 1 and 2 require O(mnp) arithmetic operations.
However, their vectorized calculation style may be employed
to accelerate matrix multiplication on certain heterogeneous
platforms, such as FPGA and GPU.

C. Encrypted Matrix Operations Under Bicyclic Encoding
We now start to discuss some matrix operations on

encrypted data under bicyclic encoding, but we defer the
encrypted matrix multiplication to the next section.

1) Switching Between Encrypted Bicyclic Encoding and
Row Encoding: The first operation is how to convert between
the bicyclic encoding and the commonly used row encoding
or column encoding. Here, we only discuss the row encod-
ing, since the discussion for the column encoding can be
obtained similarly. For a matrix A = (ai, j) ∈ Rn×m with
(n,m) coprime, the row encoding of A is defined as a vector
r(A) = (abk′/mc,[k′]m)0≤k′<mn. Suppose that d(A) is the bicyclic
encoding of A. Then there exists a linear transformation T
between r(A) and d(A). In particular, d(A) = T · r(A), where
tk,k′ = 1 with k and k′ determined as follows. For 0 ≤ i < n
and 0 ≤ j < m, we first decide k′ = i · m + j, and then
compute k = [i · t · m + j · s · n]mn, where (s, t) is a pair
of Bézout coefficients for (n,m), as in the bicyclic decoding
process. One can decide a matrix T′ satisfying r(A) = T′ ·d(A)
similarly.

Given an encryption of r(A), we can use the diago-
nal encoding introduced by Halevi-Shoup to perform linear
transformations on ciphertexts [32], thereby accomplish-
ing the conversion between the two encodings. Assum-
ing the matrix T has d non-zero diagonal vectors, this
transformation can be computed within d CMuls and
2
√

d Rots, and requires only one level of CMul multiplication
depth [36].

2) Encrypted Matrix Transpose Under Bicyclic Encoding:
Under bicyclic encoding, we show that one can transpose a
matrix for free, either in plaintext or encrypted form.

Proposition 3: For a matrix A ∈ Rn×m with gcd(n,m) = 1,
we have d(A) = d(AT).

Corollary 1: Let (ct.ai)i<d mn
` e

be ciphertexts (under an FHE
scheme that supports ` slots) of the bicyclic encoding of a
matrix A ∈ Rn×m with gcd(n,m) = 1. Then (ct.ai)i<d mn

` e
are

also ciphertexts of the bicyclic encoding of AT.

IV. ENCRYPTED MATRIX MULTIPLICATION UNDER
BICYCLIC ENCODING

In this section, we always assume that (n,m, p) are coprime,
which means bicyclic encoding applies to all matrices A, B
and X = AB, denoted by a, b, and x the encoded vectors,
respectively. We also assume that all the encoded vectors can
be encrypted into a single ciphertext, denoted by ct.a, ct.b,
and ct.x, respectively.

A. Building Blocks

For convenience, we first present two building blocks.
1) The Repeat Operation: According to Step 2 of Algo-

rithm 1, we need first to convert a ciphertext ct.a of
a to a ciphertext of (a, . . . , a), i.e., repeated with certain
times.

Algorithm 3 Repeat
Input: A ciphertext ct.a of (a, 0) ∈ R` (where a ∈ Rd) and

an integer t =
Pblog tc

i=0 ti · 2i ≥ 1 satisfying td < `.
Output: A updated ciphertext ct.c that encrypts (a, . . . , a, 0) ∈

R` with a repeated t times.
1) Initialize ct.a0 ← ct.a.
2) For 1 ≤ i ≤ blog tc do

a) Compute ct.ai ← Add(ct.ai−1,Rot−2i−1d(ct.ai−1)).
3) Set k = 2blog tc · d and ct.c := ct.ablog tc.
4) For i = blog tc − 1, blog tc − 2, . . . , 1, 0 do

a) If ti , 0 then compute ct.c ← Add(ct.c,Rot−k(ct.ai))
and update k := k + ti · 2i · d.

Proposition 4: The Repeat algorithm is correct and
requires at most 2 log t Rots and Adds, respectively. In partic-
ular, if t is a power-of-two integer, it only requires log t such
operations.

Algorithm 4 SegSum
Input: A ciphertext ct.a of (a, 0) ∈ R` (where a ∈ Rn) and

an integer k satisfying n = k · m for an integer m.
Output: A ciphertext ct.c that encrypts (c, 0) ∈ R`, where

c ∈ Rk is the segment-sum of a with length k.
1) Initialize ct.c← ct.a and m := n/k.
2) For i = dlog me − 1, dlog me − 2, . . . , 1, 0 do

a) Set ct.t := Rot2i·k(ct.c)
b) If i = dlog me − 1 then ct.t ← Sl[0,n−2i−1](ct.t).

// This can be omitted if m is a power-of-two integer.
c) Update ct.c← Add(ct.c, ct.t).

2) The SegSum Operation: In Step 4 of Algorithm 2, we
need to compute the segment-sum (Definition 1) of a vector
a = (ai)i ∈ Rn with length k satisfying n = k · m for an
integer m. The following algorithm is an encrypted form of
this process.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

1396 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Proposition 5: The SegSum algorithm is correct and
requires at most dlog me Rots and Adds, and one CMul. In
particular, if m is a power-of-two integer, it only requires
log m Rots and Adds, without CMul.

B. BMM-I (Encrypted Version of Algorithm 1)

We now propose an encrypted version of Algorithm 1. In
comparison to the plaintext algorithm (Algorithm 1), the most
significant difference lies in Step 2, where the number of repe-
titions for vectors a and b is doubled. This directly leads to the
requirement of ` > 2 ·max{mn,mp, np}. The reason is that Rot
operations are indeed performed on vectors of dimension `. In
contrast, in the plaintext algorithm, the rotation operations for
a (resp. b) are performed on a vector of dimension mn (resp.
mp). Thus, we have to double the number of repetitions of the
original vectors to guarantee the correctness of the results.

Algorithm 5 BMM-I (Bicyclic Matrix Multiplication)
Input: ct.a and ct.b, which are ciphertexts of the bicyclic

encoding of matrices A ∈ Rn×m and B ∈ Rm×p, respec-
tively, where (n,m, p) are coprime and the number of slots
` > 2 ·max{mn,mp, np}.

Output: ct.x, whose first n · p slots correspond to the bicyclic
encoding of the resulting matrix X ∈ Rn×p.

1) Initialize ct.x ← Enc(0). Compute the smallest positive
integer r satisfying p | (r · m − n) and r · m − n > 0.

2) Update ct.a ← Repeat(ct.a, 2dp/me) and ct.b ←

Repeat(ct.b, 2dn/me).
3) For 0 ≤ i < m do

a) Compute ct.ai ← Rot[−i·n]mn (ct.a).
b) Compute ct.bi ← Rot[i·(r·m−n)]mp (ct.b).
c) Update ct.x← Add(ct.x,Mul(ct.ai, ct.bi)).

Another difference lies in the for loop: neither ct.ai nor ct.bi
is truncated to keep only the first np elements. Even after the
for loop, ct.x is still not truncated to contain only the first np
elements. In fact, if we denote the `-dimensional vector x by
the decryption of ct.x returned by BMM-I, then the first np
components of x exactly correspond to the bicyclic encoding
of the result matrix X = AB. Hence, the truncation can be
delayed until decryption. This property implies that BMM-I
does not need any plaintext-ciphertext multiplication CMul.

Proof: [Proof of Theorem 1 item 1] Under the assumptions
on n,m, p and `, bicyclic encoding is available for each matrix,
and each bicyclic encoding vector can be encrypted in one
ciphertext. Further, the assumption ` > 2 · max{mn,mp, np}
guarantees the correctness of Rots in Step ca and cb. Thus,
BMM-I exactly follows the plaintext Algorithm 1, which
implies the correctness. The cost of BMM-I follows from the
cost of Repeat and counting. �

Remark 1: Although BMM-I does not use plaintext-
ciphertext multiplication CMul, users should know that the
computation results are contained only in the first np slots.
Suppose that decrypting the ct.x obtains x ∈ R`. Then running
bicyclic decoding ψ`,n,p(x) gives the resulting matrix X = AB.
If necessary, these results can be extracted through a single
Sl[0,np−1](ct.x) operation. In fact, performing this selection

remains unnecessary unless there is a need to utilize the latter
` − np slots.

Comparison with Existing Algorithms: Compared with
algorithms designed specifically for square matrices [35],
[36], [37], [38], BMM-I offers greater flexibility in matrix
dimensions. Despite the pairwise coprime constraints among
(n,m, p), one can use padding with zeros to meet the require-
ments. Generally, BMM-I needs fewer padding positions.
Compared with algorithms that support encrypted matrix mul-
tiplication of arbitrary dimensions [39], [40], as well as those
facilitating encrypted approximate number matrix operations
[33], [35], [36], [37], [38], BMM-I requires the fewest number
of multiplication depths and ciphertext rotations. While the
algorithm in [38] requires a smaller number of ciphertext-
ciphertext multiplications (Mul), our algorithm does not need
plaintext-ciphertext multiplication (CMul); see Table I.

However, the condition ` > 2 · max{mn,mp, np} in BMM-I
constrains the dimensions of matrices. For a set of CKKS
parameters with ` = 212, Jiang et al.’s algorithm [36] supports
encrypted matrix multiplication of dimensions (64, 64, 64),
whereas BMM-I only supports dimensions of (43, 45, 44),
which is about

√
`/2. (Note that the algorithm in [38] only

supports (16, 16, 16), i.e., 3√
`, encrypted matrix multiplication

under the same setting.) However, experimental results in
Section VII show that BMM-I is still practical.

Algorithm 6 BMM-II
Input: ct.a and ct.b, which are ciphertexts of the bicyclic

encoding of matrices A ∈ Rn×m and B ∈ Rm×p,
respectively, where (n,m, p) are pairwise coprime and the
number of slots ` > n · m · p.

Output: ct.x, whose first n · p slots correspond to the bicyclic
encoding of the resulting matrix X = AB ∈ Rn×p.

1) Initialize ct.x← Enc(0).
2) Set ct.a← Repeat(ct.a, p), ct.b← Repeat(ct.a, n).
3) Compute ct.x← Mul(ct.a, ct.b).
4) ct.x← SegSum(ct.x, n p)

C. BMM-II (Encrypted Version of Algorithm 2)
Similarly, we propose an encrypted version of Algorithm

2 as BMM-II (Algorithm 6). We note that the discussion in
Remark 1 also holds for BMM-II.

Proof of Theorem 1 item 1: In comparison to Algorithm
2 in plaintext, all steps of BMM-II are essentially the same.
Therefore, the item 1 of Theorem 1 follows from Proposition
2, which also completes the proof of Theorem 1. �

Comparison with BMM-I: Compared with BMM-I, BMM-II
imposes stricter constraints on matrix dimensions, requiring
` > nmp. Given a fixed `, this constraint limits the matrix
dimensions that BMM-II can support. However, this stricter
requirement ensures that we can always construct vectors of
dimension nmp from the diagonal encoding of the two input
matrices. The product of these two vectors encapsulates all the
information of the matrix multiplication result, leading to an
optimized result on the number of ciphertext operations.

Comparison with Existing Algorithms: Similar to BMM-II,
both the Rizomiliotis-Triakosia (RT) algorithm [38] and Zheng

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1397

et al.’s algorithm [30] have a restriction of d = O(3√N), where
d = max(n,m, p) and N is the dimension of the ring used
in the encryption algorithm. Compared to the RT algorithm,
the number of Rots required by BMM-II is reduced from a
linear function in d to a logarithmic function. Compared to
Zheng et al.’s algorithm, the cost of BMM-II is considerable;
theoretically, BMM-II and Zheng et al.’s algorithm are the
two most cost-effective algorithms. However, because Zheng
et al.’s algorithm relies on the tensor structure of the ring, it
currently only supports the BGV scheme, while BMM-II can
support any homomorphic encryption scheme that supports
SIMD, including BGV, B/FV, CKKS.

However, we note that when computing high-dimensional
matrix multiplication in a block-wise manner, these algo-
rithms require more blocks than the other algorithms listed
in Table I, which makes them not so practical as shown in
Section VII. Next, we will discuss how to circumvent this
obstacle to support encrypted matrix multiplication with higher
dimensions.

V. ENCRYPTED MATRICES OF HIGH DIMENSIONS

Assume that the matrix multiplication with dimensions
(n,m, p) satisfies the condition that max(mn,mp, np) > `. This
implies that at least one matrix involved in the multiplication
(either A, B, or X) requires multiple ciphertexts for stor-
age. Under this setting, traditional methods typically resort
to block matrix multiplication. Besides, there exists another
natural approach, called segmented strategy for handling
high-dimensional encrypted matrices, in which any bicyclic
encoding vector of matrices with dimension larger than ` may
be divided into multiple vectors of dimension `.

A. Block Matrix Multiplication

Let A ∈ Rn×m and B ∈ Rm×p be the two matrices to
be multiplied. Assume that the number of slots ` supports a
(n0,m0, p0) matrix multiplication for packed ciphertexts with
m0 = max{n0,m0, p0}. For simplicity, we further assume that
n1 = n/n0 = m/m0 = p/p0. Then both A and B can
be split into n1 × n1 blocks. To compute this (n1, n1, n1)
block matrix multiplication, one needs to compute nω1 matrix
multiplications of dimension (n0,m0, p0) with 2 < ω < 3,
e.g., for Strassen algorithm [31], ω = log 7 ≈ 2.81. We call
the resulting algorithm the block version of BMM-I, which
requires m0nω1 Muls and 2(m0 + 1)nω1 Rots. In fact, the block
strategy applies to all matrix multiplication algorithms. In
Table III, we summarize the cost of some of them, such as
[30], [36], and [38]. Note that n0 = m0 = p0 =

√
` for [36]

and n0 = m0 = p0 =
3√
` for [38].

It appears that the block version of BMM-II and Zheng et
al.’s algorithm [30] are faster than the others in Table III.
However, as mentioned previously, these two algorithms have
to deal with more blocks. In particular, n1 for these two
algorithms is approximately d/`1/3, while for the others n1
is about d/`1/2, where d = max(n,m, p).

For the block version of BMM-I, if we assume that n0 ≈

m0 ≈ p0 ≈
√
`/2 and d = max{n,m, p}, then #Mul ≤

(`/2)
1−ω

2 dω, and #Rot ≤ 2(`/2)(1−ω)/2dω, which seems worse

TABLE III
THE COST OF DIFFERENT BLOCK ALGORITHMS FOR HIGH DIMENSIONAL

(n,m, p) ENCRYPTED MATRIX MULTIPLICATION WITH
d = max{n,m, p}

than that of algorithms in [36] and [38]. However, the advan-
tages of the block version of BMM-I include: it requires only
one multiplicative depth, and it needs no CMul. Experiments in
Section VII-D show that the block version of BMM-I performs
well in practice.

B. Segmented Matrix Multiplication

The bicyclic encoding introduced in Section III allows us
to segment the bicyclic encoding vector of matrices, thereby
supporting high-dimensional encrypted matrix multiplication
following Algorithm 1 exactly. To facilitate this, it is necessary
to introduce a fundamental operation called LongRot, used to
rotate the segmented vectors of a high-dimensional vector.

1) The LongRot Algorithm: Given a ∈ Rd with d > `, the
LongRot operation implements the following functionality:
• Construct a = (a, . . . , a) ∈ Rt·d, repeating t times of a;
• Rotate the vector a to the left by k positions, resulting in

a′ = ρk(a);
• Select the first τ elements of a′ and divide them into
d τ
`
e groups, each containing ` elements, possibly zero-

padding for the last one.
Clearly, this functionality is designed to construct the cipher-
texts of ai and bi from the ciphertexts of a and b in Step b
of Algorithm 1, respectively. We omit the detailed description
here since this involves only some tedious control structures.
For a complete description, we refer the readers to [53].

Algorithm 7 LongRot
Input: Ciphertexts (ct.ai)0≤i<w for a =

(a0, a1, . . . , aw−2, aw−1) ∈ Rd with aw−1 ∈ Rz and
ai ∈ R` for i = 0, 1, . . . ,w − 2 (i.e., d = (w − 1)`+ z with
0 ≤ z < `, where ` is the number of slots), the number of
repeated times t, the number of positions to be rotated
k ∈ [0, d), the number of selected elements τ.

Output: Ciphertexts (ct.a′i)0≤i<d τ` e, i.e., d τ
`
e ciphertexts corre-

sponding to the first τ elements of a′.

Proposition 6: The LongRot algorithm correctly computes
the above functionality within d τ

`
e Rots, 2d τ

`
e+ τ

d + 1 CMuls,
and one CMul multiplicative depth.

2) BMM-III (Segmented Version of BMM-II): Now,
we present an algorithm (BMM-III) for high-dimensional
encrypted matrix multiplication under bicyclic encoding. It is
essentially a direct translation of Algorithm 1 into its encrypted

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

1398 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE IV

THE COST OF BMM-III FOR HIGH-DIMENSIONAL RECTANGULAR
MATRIX MULTIPLICATION

version. The only difference lies in Step 3a, where the rotation
step size is adjusted from − jn to (m − j)n. These two are
evidently equivalent and meet the requirement of LongRot.

Proof of Theorem 2: From the structure of BMM-III, it is
easy to see that the required multiplicative depth is one Mul
and one CMul. It follows from Proposition 6 that Step 3a and
3b requires at most 2d np

`
e+ p

m + 1 and 2d np
`
e+ n

m + 1 CMuls,
respectively, and both costs at most d np

`
e Rots. Therefore,

totally, it requires at most 2m · d np
`
e Rots and (4 · d np

`
e+ 2)m+

n+ p CMuls. Step 3c costs d np
`
e Muls. Thus, the total number

of Muls is bounded by m · d np
`
e. �

Algorithm 8 BMM-III
Input: Ciphertexts (ct.ai)i<dmn/`e for the bicyclic encoding of

A ∈ Rn×m and ciphertexts (ct.bi)i<dmp/`e for the bicyclic
encoding of B ∈ Rm×p, where (n,m, p) are pairwise
coprime.

Output: Ciphertexts (ct.xi)0≤i<dnp/`e for the bicyclic encoding
of the resulting matrix X ∈ Rn×p.

1) For i = 0, 1, . . . , dnp/`e − 1 initialize ct.xi ← Enc(0).
2) Compute the smallest positive integer r such that p | (r ·

m − n) and r · m − n > 0.
3) For j = 0, 1, . . . ,m − 1 do the following:

a) (ct.a′i)i ← LongRot((ct.ai)i<d mn
` e
, d p

m e, (m − j)n, np).
b) (ct.b′i)i ←LongRot((ct.bi)i<d mp

` e
, d n

m e, j(rm − n), np).
c) Compute ct.xi ← Add(ct.xi,Mul(ct.a′i , ct.b′i)) for i =

0, 1, . . . , dnp/`e − 1.

Comparison: For square encrypted matrix multiplication
with dimension d, BMM-III requires O(d3) ciphertext oper-
ations. Therefore, in an asymptotic sense, the number of
ciphertext operations required by BMM-I is greater than those
required by the block version algorithms in Section V-A.
However, experiments in Section VII demonstrate that when
d ≤ 1024, BMM-III has a distinct advantage over those block
version algorithms. The reason is that most of the block
version algorithms are originally recursive. It is well known
that the efficiency of recursive algorithms is not that fast.
Usually, one can rewrite a recursive algorithm as a loop
algorithm. However, in the case of matrix multiplication over
encrypted data, such a rewriting will increase the required
multiplicative depth regarding the recursion depth, which is
unacceptable.

Additionally, BMM-III supports encrypted matrix multi-
plication of flexible dimensions. In the literature, Huang
et al. [14] investigated encrypted matrix multiplication for
high-dimensional rectangular matrices with different shapes,
including matrix multiplication of dimensions (n, n, `/n),
(n, `/n, `/n), and (`/n, n, `/n), where ` is the number of
slots. All of these shapes cost similar ciphertext operations.
Compared with theirs in Table IV shows that BMM-III reduces
the number of Rots by a factor 1

3 and saves one CMul depth,
at a cost of a bit more CMuls.

VI. ANOTHER APPLICATION OF SEGMENTED STRATEGY

In this section, we consider applying the segmented strategy
to the algorithm by Lu et al. [33], which is not under bicyclic
encoding. This algorithm is no longer the best for matrix
multiplication with smaller dimensions, as shown in Table I.
However, combining several optimizations and observations,
the segmented version of Lu et al.’s algorithm (SegLKS)
requires the fewest number of ciphertext rotations in theory
among all currently known encrypted matrix multiplication
algorithms for high-dimensional matrices.

A. Lu Et Al.’s Algorithm

The algorithm in [33] for encrypted matrix multipli-
cation relies on the Replicate operation. The function
of Replicatei(ct.a) is to transform a ciphertext of a =

(a0, . . . , a`−1) into a ciphertext of (ai, ai, . . . , ai). A Replicate
can be finished within one CMul plus log ` Rots and Adds.
Lu et al.’s algorithm supports matrix multiplication of any
dimension. For computing an (n,m, p) matrix multiplication
X = AB in encrypted form, the algorithm encodes all matrices
row by row.

Algorithm 9 SegLKS (Segmented variant of [33])
Input: Ciphertexts (ct.ai, j)0≤i<n,0≤ j<dm/`e for A ∈ Rn×m and

ciphertexts (ct.bi, j)0≤i<m,0≤ j<dp/`e for B ∈ Rm×p, where
ct.ai, j is the ciphertext corresponding to the j-th segment
of the i-th row of a, similar for ct.bi, j.

Output: Ciphertexts (ct.xi, j)0≤i<n,0≤ j<dp/`e for the resulting
matrix X ∈ Rn×p.

1) For i = 0 to n − 1 do
a) For j = 0 to dp/`e − 1 do

i) For k = 0 to dm/`e do
A) For ι = 0 to ` − 1 compute ct.xi, j ←

Add(ct.xi, j,Mul(Replicateι(ct.ai,k), ct.bk`+ι, j)).
2) Return (ct.xi, j)0≤i<n,0≤ j<dp/`e.

When max(m, p) < `, the number of ciphertexts in Lu
et al.’s algorithm corresponding to A, B and X are n, m
and n, respectively. It requires mn Muls and CMuls, and
mn log p Rots. Note that only log ` key-switching keys are
enough for Lu et al.’s algorithm, which is used to replicate
each entry of A. In addition, since the matrices are encoded
by rows, it naturally supports the segmented method.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1399

TABLE V

THE COST OF SEGMENTED ALGORITHMS FOR HIGH DIMENSIONAL
ENCRYPTED (n,m, p) MATRIX MULTIPLICATION WITH n ≤ p

B. SegLKS (Segmented Lu Et Al.’s Algorithm)

Now we consider matrix multiplication of high dimensions,
where each row of A or B is encoded and encrypted as multi-
ple ciphertexts in a segmented manner, say, min(m, p) > `. The
number of ciphertexts corresponding to A, B and X are ndm

`
e,

md p
`
e and nd p

`
e, respectively. Further, this algorithm requires

mnd p
`
e Muls and CMuls, and mn log p Rots. However, we can

optimize the algorithm further.
1) On Encoding (O1): Since the cost of SegLKS heavily

relies on a factor nm, when nm � mp, it is costly. If this is the
case, we can encode the matrix by columns, or, equivalently,
consider the matrix multiplication in transpose XT = BT AT.
So, one can always assume that n ≤ p.

2) On the Number of Ciphertexts (O2): For matrix A ∈
Rn×m, since it only involves the Replicate operation, it can be
encoded and encrypted into fewer ciphertexts without affecting
efficiency. Indeed, it can be encrypted in a row-wise manner
into d nm

`
e ciphertexts. For instance, if mn < `, this reduces the

number of ciphertexts for A from n to 1.
3) On the Number of Rots (O3): For multiplying with the

ciphertexts of each row of B, one must replicate each element
of A to a vector of dimension p theoretically. However, all
segments are the same. So it does not need mn log p Rots,
but only needs mn log ` Rots. This observation shows that the
required Rots is independent of p.

4) On Replicate the Same Ciphertext (O4): In SegLKS,
we need to replicate a = (a0, . . . , am−1) ∈ Rm to
(ai, ai, . . . , ai) ∈ R` for i = 0, . . . ,m−1. This costs m log ` Rots
and m CMuls. However, to obtain the same results, one
may first group a into groups with each group κ elements
and repeat each group `/κ times. Then, for each repeated
ciphertext, replicate the κ elements. For instance, assume that
our goal is to obtain ciphertexts of (i, . . . , i) ∈ R16 from
a = (1, 2, 3, 4) ∈ R4 for i = 1, 2, 3, 4. First, we select
(1, 2) ∈ R2 and repeat it 8 times to obtain (1, 2, . . . , 1, 2),
which costs 1 CMuls and log(`/κ) = 3 Rots. Then we can
obtain (1, 0, . . . , 1, 0) and (0, 2, . . . , 0, 2) by 2 CMuls. Then
we can obtain (1, . . . , 1) and (2, . . . , 2) by 2 Rots. With this
optimization, we can reduce the number of Rots from 16 to
10, at a cost of m/κ more CMuls and one more CMul depth.
So, to replicate all elements of A, the required Rots and
CMuls are bounded by nm(log(`/κ)

κ
+ log κ) and nm(1 + 1/κ)

respectively. The minimum number of Rots achieves when κ
satisfies κeκ−1 = `.

Summary: We summarize in Table V the segmented algo-
rithms. If d np

`
e is small, say a constant, the efficiency of

BMM-III is relevant since the required number of operations

is only linear in m. In the case of n,m � p, the advantage of
SegLKS is evident, as the required number of Rots and CMuls
is independent of p. Furthermore, we also note that the number
of Rots required by SegLKS is even less than that of the
state-of-the-art algorithm [30], which needs `−

2
3 d2 log d Rots

with d = max{n,m, p}, asymptotically more than log ` · d2

(SegLKS/O3) when d tends to infinity.

VII. IMPLEMENTATION AND EVALUATION

In this section, we first introduce our implementation with
more details, followed by a comprehensive experimental study
of the involved algorithms to evaluate their performance.

A. Implementation

To evaluate the performance of the algorithms introduced
in this paper, we implement them all (BMM-I, BMM-II,
BMM-III, SegLKS) and the algorithms of [36] and [38]
by using the CKKS scheme [6] implemented in Microsoft’s
open-source SEAL [15]. We also implement the naı̈ve (text-
book) and Strassen block version of the algorithms in [36],
BMM-I, and BMM-II. Our implementation is open-sourced at
https://github.com/hangenba/bicyclic mat mul.

In SEAL, the key-switching keys for Rotk are generated
only for k = 2i by default. When a Rotk operation is involved
for a non-power-of-two k, the task can be accomplished using
consecutive rotations, e.g., Rot3(ct.x) = Rot1(Rot2(ct.x)).
This is the main reason for the time-consuming nature of Rot.
For efficiency, we pre-generate all the necessary switching
keys in our implementation. Although this needs additional
time and storage overhead for key generation, according to
our test with BMM-III for N = 8192, it saves about 15% of
computing time. Once these keys are generated, they can be
reused in subsequent operations.

There are many fast algorithms for matrix multiplication in
plain, e.g., [31] and [54]. Almost all of these algorithms are
recursive. It is well known that a recursive program can always
be rewritten as an iterative loop. However, in the context of
ciphertext computation, such as encrypted Strassen’s matrix
computation, the multiplication depth of the rewritten version
may depend on the recursion depth, which will slow down
the algorithm significantly. In contrast, the original recursive
algorithm might only require a single Mul depth (possibly plus
one or two CMul depths), although it is memory-consuming
and hard to optimize further.

B. Setup

All experiments are run on a single thread (no paral-
lelization) of a Desktop with an Intel Core i9-12900K at
3.2 GHz and 32 GB memory. We evaluate encrypted matrix
multiplication algorithms with different dimensions:
• Small (almost) square: all matrices A, B and X can be

packed into one ciphertext. This setting is to evaluate
BMM-I, BMM-II, and algorithms in [36] and [38].

• Large (almost) square: all matrices A, B and X have to be
packed into several ciphertexts. This setting is to evaluate
BMM-III, together with the block version of Jiang et al.’s
algorithm [36] and BMM-I.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hangenba/bicyclic%5Fmat%5Fmul

1400 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE VI

PERFORMANCE COMPARISON WITH THE RT ALGORITHM FOR
SMALL-DIMENSIONAL MATRICES. N = 8192 AND log ∆ = 30

• Rectangular: Some of A, B and X are rectangular.
This setting is to compare the performance of BMM-III,
SegLKS and the state-of-the-art algorithm [14].

Recall that the ciphertext of CKKS is Z[X]/〈XN + 1, q〉,
and there is a scale factor ∆ in CKKS related to the precision
of the computed results. In our tests, all matrix entries are set
by pow(−1, i+ j) ∗ rand()/pow(2, 30), roughly in the interval
(−2, 2). The degree of ciphertext space and ciphertext modulus
may vary depending on algorithms. In particular, we always
set the bit-size of q as 50 + L · log ∆ + 60, where L is the
number of multiplicative depth (Mul and CMul) required by
the corresponding algorithm (see, e.g., Table I).

Such a setting always achieves at least 128-bit security level
according to the latest lattice estimator [55]. We also note that
multiple test runs show that in this setup, the maximal absolute
errors of the computed results are always less than 10−2. All
timings include encryption, computation, and decryption.

C. Matrices With Small Dimension

For CKKS-based encrypted matrix multiplication with small
dimension (each of the matrices A, B and X = AB can be
encoded and encrypted into a single ciphertext), we compare
BMM-I and BMM-II with the algorithms in [36] and [38].

When N = 8192, the Rizomiliotis-Triakosia (RT) algo-
rithm [38] supports square matrix multiplication of dimension

3√N/2 = 16. As indicated in Table VI, BMM-I achieves a
1.5x speedup under the same parameter settings as the RT
algorithm. However, due to the lower multiplicative depth
required by BMM-I, it can finish the computation with a
smaller ciphertext modulus. Under this setting, compared
with the RT algorithm, BMM-I eventually achieves a 2.4x
speedup. In the same parameter setting, BMM-II supports a
(15, 16, 17) matrix multiplication, which performs the best
among these algorithms, achieving a 16.6x speedup. When
N = 16384 or N = 32768, the RT algorithm does not have
corresponding matrix multiplication, whereas both BMM-I and
BMM-II have. More precisely, the RT algorithm can support
matrix multiplication of other dimensions at a cost of more
ciphertext operations. The reason is that the rotation operation
Rot is designed for vectors of dimension `. If the dimension
is not exact `, then one Rot can be finished with two Rots,
two CMuls and one Add. The same reason holds for Jiang et
al.’s algorithm when N = 16384 in Table VII.

We test three different N in Table VII. For the same N,
BMM-I demonstrates a clear advantage (achieving a 4.4x
speedup at least) compared with Jiang et al.’s algorithm [36],
though the matrix dimensions it supports are only about
√

1/2 ≈ 70% of that supported by Jiang et al.’s algorithm.

TABLE VII

PERFORMANCE COMPARISON WITH [36] FOR MATRICES WITH
SMALL DIMENSION, WHERE log ∆ = 30. “–” INDICATES THAT THE

ALGORITHM DOES NOT SUPPORT MATRIX MULTIPLICATION
FOR THE DIMENSIONS

TABLE VIII

PERFORMANCE COMPARISON FOR (128, 128, 128) MATRIX
MULTIPLICATION. log ∆ = 30 EXCEPT FOR BMM-III

WITH log ∆ = 40

In fact, the matrix dimension supported by all these algo-
rithms are constrained by the number of plaintext slots
`. For instance, for N = 8192 (` = 4096), the algo-
rithm in [36] can support square matrix multiplication of
dimension

√
` = 64, the algorithm in [38] is limited to

3√
` = 16, and BMM-I (resp. BMM-II) can support matrix

multiplication of dimensions (43, 45, 44) (resp. (15, 16, 17)).
However, the dimensions supported by BMM-I and BMM-II
are quite flexible. For example, when N = 16384, BMM-I
can support matrix multiplication of dimensions (61, 64, 63)
or others, say (29, 128, 31) with a runtime of 1940 ms
when log q = 140, while the other two algorithms do not
support square matrix multiplication under this parameter
setting.

Comparison with the Algorithm in [30]: Since we did
not implement our algorithms for the BGV scheme, we
cannot directly compare the performance with Zheng et al.’s
algorithm [30]. As analyzed previously, the performance of
BMM-II should be a bit better than that of theirs. In particular,
according to [30, Table 2], it is reported that their algorithm
costs 1 Mul, 2 CMuls and 14 Rots for a (16, 16, 16) matrix
multiplication (their implementation costs about 119ms on our
desktop for the first example given in [30, Tab. 3]), while
BMM-II requires only 1 Mul and 13 Rots for a (15, 16, 17)
matrix multiplication in Table VII.

D. Large Square Matrix Multiplication

To evaluate the performance of algorithms for square matri-
ces of high dimensions, we assume a scenario involving matrix
multiplications with dimensions of 128, 256, 512 and 1024,
respectively. For these tasks, we test different algorithms,
including the naı̈ve and Strassen version of block matrix
multiplication, and the segmented BMM-III; see Tables VIII–X
for details. Since it follows from Table VI that the algorithm
in [38] is not comparable with BMM-I, we here only consider

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1401

TABLE IX
PERFORMANCE COMPARISON FOR (256, 256, 256) MATRIX

MULTIPLICATION. log ∆ = 30 EXCEPT FOR ALGO. 8
WITH log ∆ = 40

the Jiang et al.’s algorithm [36], BMM-I, and BMM-II as the
base algorithms for the block version.

1) Memory and the Number of Ciphertexts: In Table
VIII–X, we only list the dimensions of the involved basic
block, from which, together with the input dimensions, the
number of blocks and hence the number of ciphertexts can
be determined. For example, each matrix is split into 2 × 2
blocks for Naı̈ve block [36] in Table VIII with N = 8192,
and hence each matrix is encrypted as 4 ciphertexts; while for
the naı̈ve block BMM-II with the same N, the second matrix
is split into 8 × 8 blocks, and hence encrypted as 64 cipher-
texts. Although using BMM-I or BMM-II for high-dimensional
matrix multiplication usually generates more ciphertexts than,
e.g., Jiang et al.’s [36], which makes these algorithms require
more memory than that of [36], those algorithms based on
BMM-III do not have this disadvantage. For the last row in
Table VIII as another example, each matrix is encrypted as
5 ciphertexts, only 1 more than that of [36]. Once again, we
note that the timings include all for encryption, computation,
and decryption.

2) Timings: From Table VIII, it is evident that for
(128, 128, 128) matrix multiplication, the most efficient is
BMM-II using the naı̈ve block method, while surprisingly,
the Strassen version of BMM-II is the worst. In fact, this is
consistent with the previous analysis, as although the basic
version of BMM-II is theoretically the best among these algo-
rithms, it supports the smallest matrix dimensions, resulting in
more blocks and thus affecting the performance. Therefore, we
will not consider the Strassen version of BMM-II for further
tests.

As indicated in Table IX, compared with the naı̈ve block
version, the Strassen block version does provide a speedup.
In addition, the Strassen block version of BMM-I is more
efficient than that of Jiang et al.’s. However, it should be
noted that the Strassen block version of BMM-I requires more
ciphertexts. For instance, when N = 8192, the Strassen block
version of BMM-I needs 64 ciphertexts to store a matrix,
while the Strassen block version of Jiang et al.’s algorithm
requires only 16. Table IX also shows that the segmented
algorithm BMM-III with N = 8192 outperforms all block
algorithms, each matrix stored in 17 ciphertexts due to the
coprime limitation of the dimensions. For example, it can
finish a (256, 259, 257) encrypted matrix multiplication within
42.90 seconds (2x faster than naı̈ve block algorithm in [36]), of

TABLE X
PERFORMANCE COMPARISON FOR MATRIX MULTIPLICATION OF

DIMENSION 512 AND 1024 WITH N = 8192

TABLE XI
PERFORMANCE FOR RECTANGULAR MATRIX MULTIPLICATION (I)

which 15.80 seconds are spent generating the switching keys
required for Rot. Indeed, once these keys are generated, they
can be reused, hence possibly further improving the efficiency
for subsequent computations in practical applications.

Based on observations derived from Table VIII and IX, the
setting N = 8192 performs better than N = 32768 for all tested
algorithms. Thus, in tests with dimensions of 512 and 1024, we
fix N = 8192. From Table X, the naı̈ve block BMM-II perform
the worst, since, again, more blocks slow down the speed. In
addition, we have a similar observation to that from Table IX,
indicating that BMM-III has the best performance among these
algorithms. Specifically, for the task of (1024, 1024, 1024)
encrypted matrix multiplication, BMM-III is 5x faster than the
naı̈ve block version Jiang et al.’s algorithm [36]. By the way,
We also test the performance of the naı̈ve block BMM-III,
which costs about 260s for the (512, 512, 512) case with the
basic block as (256, 259, 257).

E. Rectangular Matrix Multiplication

Huang et al. in [14] investigated high-dimensional encrypted
rectangular matrix multiplication for different shapes. As indi-
cated in Table XI, for the different dimensions in [14], as the
dimensions increase, the efficiency of BMM-III gradually out-
performs that of Huang et al.’s algorithm, with a 2.6x speedup
at most. Furthermore, BMM-III can be used to cases of even
larger dimension. For instance, it can finish a (8191, 8192, 15)
encrypted matrix multiplication within 1452.16 seconds, while
Huang et al.’s algorithm in its current setup does not support
this instance.

Tables XII and XIII include two additional cases of rectan-
gular encrypted matrix multiplication not discussed in [14].
In the first case (Table XII), matrix A is short and wide,
while matrix B is tall and narrow, i.e., n, p � m. The naı̈ve
block version of BMM-I exhibits the best performance, about

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

1402 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE XII
PERFORMANCE (IN SEC.) FOR RECTANGULAR MATRIX

MULTIPLICATION (II). N = 8192, log ∆ = 30

TABLE XIII
PERFORMANCE (IN SEC.) FOR RECTANGULAR MATRIX

MULTIPLICATION (III). N = 8192, log ∆ = 30

4x faster than the corresponding version of Jiang et al.’s
algorithm. Note thatBMM-III is a bit faster than the naı̈ve block
version of Jiang et al.’s, but slower than that of BMM-I. So, we
omit its performance here. Note that the naı̈ve block BMM-II
applies to the tests in Table XII. It costs 0.20, 1.52, 23.02, and
513.07 seconds, respectively.

In Table XIII, we report experimental results for another
case, i.e., n ≈ m � p and mn < ` (for this case the
LongRot algorithm and hence the BMM-III algorithm do not
work), for which SegLKS demonstrates the best performance.
This is because the dimensions (n,m) of the matrix A are
relatively small, and the number of Rots and CMuls required
by SegLKS are independent of the number of columns p
of the matrix B (as already indicated in Section VI-B). We
implement all optimizations in Section VI-B. Experiments
show that SegLKS with O4 is about 3x faster than that without
O4. Thus, we only list the performance of SegLKS with O4
in Table XIII. It follows from Table XIII that the naı̈ve block
version of BMM-I is significantly faster than the naı̈ve block
version of Jiang et al.’s, but slower than SegLKS with O4 (in
Table V κ = 8 is fixed for ` = 4096). In particular, for the
case of (32, 33, 13847), SegLKS with O4 is about 38x faster
than the naı̈ve block version of [36].

F. Comparison With Most-Recent Algorithms

In a recent work [41], Zhu et al. presented four different
algorithms for different matrix dimensions (square and rectan-
gular). In a very recent work [42], Gao and Gao presented a
homomorphic encryption scheme named GMS for encrypted
matrix multiplication. The two works considered similar cases
and designed and implemented algorithms in HElib. The code
of the two works does not seem to be open-sourced. So we
take the time from their paper directly. For a (128, 128, 128)
encrypted matrix multiplication, Zhu et al.’s algorithm costs
about 200 seconds (with a 2.5GHz CPU), while Gao and
Gao’s algorithm takes about 102 seconds (with a 2.6 GHz
CPU). Note that the naı̈ve block version of BMM-II costs only
4.4 seconds (see Table VIII). Similar observations can be made
for other square or rectangular cases as well. While such sig-
nificant performance differences may be attributed to the use

of different software libraries, different encryption schemes,
or different parameters, the theoretical results in Table I show
that BMM-I and BMM-II have their own advantages.

VIII. CONCLUSION

In this paper, we introduce bicyclic encoding, a novel
method for matrix encoding. We design several new algorithms
for encrypted matrix multiplication under bicyclic encoding,
and investigate the block and segmented methods for handling
high-dimensional matrices. In the context of CKKS, the fol-
lowing conclusions can be drawn from our theoretical analysis
and comprehensive experimental study:
• For encrypted matrix multiplication of small dimensions,

BMM-I or BMM-II is the optimal choice;
• When dealing with larger-scale encrypted square matrix

multiplication, although theoretically, variants based on
the Strassen block-wise strategy are faster, the practi-
cal performance is better with the segmented strategy
(BMM-III);

• For those types of rectangular encrypted matrix mul-
tiplication discussed in [14], BMM-III shows better
performance;

• For rectangular encrypted matrix multiplication with n ≈
p � m, the naı̈ve block BMM-I is effective;

• For rectangular encrypted matrix multiplication with n ≈
m � p, SegLKS that combines Lu et al.’s algorithm [33]
with the segmented strategy demonstrates exceptional
performance.

From the perspective of practical application, the imple-
mentations in this paper can still be further optimized. For
example, employing a multi-thread parallelization can yield
additional acceleration; for block algorithms, the intermedi-
ate results after rotations can be reused, and hence further
acceleration may be achieved; the hoisting and double-hoisting
technique (e.g., [45]) may be used to accelerate our implemen-
tation further as well.

Furthermore, implementing these algorithms using BGV
or B/FV schemes would significantly enhance integer matrix
multiplication on encrypted data. Additionally, exploring other
matrix operations beyond transpose and multiplication under
bicyclic encoding are worth further investigation.

Finally, the error analysis for matrix multiplication on
encrypted data is another intriguing direction, which is closely
related to choosing parameters, e.g., the scale factor ∆ for
CKKS, or the plaintext modulus for BGV and B/FV.

ACKNOWLEDGMENT

The authors thank Zhicong Huang for sharing with them,
together with Cheng Hong, Chenkai Weng, and Wenjie Lu,
their codes for [14], and Xiaopeng Zheng for discussion with
them on the multiplicative depth of the encrypted Strassen
algorithm. They also thank an anonymous reviewer from ACM
CCS ’24 whose suggestions inspired them to design BMM-
II, and other anonymous reviewers for their suggestions that
helped present the paper more clearly. The work of Linhan
Yang was done when he was visiting with CIGIT, CAS.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HOMOMORPHIC MATRIX OPERATIONS UNDER BICYCLIC ENCODING 1403

REFERENCES

[1] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy
homomorphisms,” in Foundations of Security Computation. New York,
NY, USA: Academic, 1978, pp. 165–179.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput. (STOC), 2009, pp. 169–178.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1–36, Jul. 2014.

[4] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical GapSVP,” in Proc. Annu. Cryptol. Conf., 2012,
pp. 868–886.

[5] J. Fan and F. Vercauteren. (2012). Somewhat Practical Fully Homomor-
phic Encryption. [Online]. Available: https://ia.cr/2012/144

[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2017, pp. 409–437.

[7] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptograph. Techn., Apr. 2015, pp. 617–640.

[8] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34–91, Jan. 2020.

[9] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Designs, Codes Cryptography, vol. 71, no. 1, pp. 57–81, Apr. 2014.

[10] S. Halevi and V. Shoup, “Bootstrapping for HElib,” J. Cryptol., vol. 34,
no. 1, pp. 641–670, Jan. 2021.

[11] A. Kim et al., “General bootstrapping approach for RLWE-based homo-
morphic encryption,” IEEE Trans. Comput., vol. 73, no. 1, pp. 86–96,
Jan. 2024.

[12] F.-H. Liu and H. Wang, “Batch bootstrapping I: A new framework for
SIMD bootstrapping in polynomial modulus,” in Proc. EUROCRYPT,
2023, pp. 321–352.

[13] B. Xiang, J. Zhang, Y. Deng, Y. Dai, and D. Feng, “Fast blind rotation
for bootstrapping FHEs,” in Proc. CRYPTO, 2023, pp. 3–36.

[14] Z. Huang, C. Hong, C. Weng, W.-J. Lu, and H. Qu, “More efficient
secure matrix multiplication for unbalanced recommender systems,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 551–562,
Jan. 2023.

[15] (2023). Microsoft SEAL (Release 4.1.1). Accessed: Microsoft. [Online].
Available: https://github.com/microsoft/SEAL

[16] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proc. ARES ’20, 2020, p. 14.

[17] S. Fu, Y. Yu, and M. Xu, “A secure algorithm for outsourcing matrix
multiplication computation in the cloud,” in Proc. 5th ACM Int. Work-
shop Secur. Cloud Comput., Apr. 2017, pp. 27–33.

[18] J. Dumas et al., “Secure multiparty matrix multiplication based on
Strassen-Winograd algorithm,” in Proc. IWSEC, 2019, pp. 67–88.

[19] L. Zhao and L. Chen, “Sparse matrix masking-based non-interactive ver-
ifiable (Outsourced) computation, revisited,” IEEE Trans. Dependable
Secur. Comput., vol. 17, no. 6, pp. 1188–1206, Nov. 2020.

[20] H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. S. Song, and S. Wagh,
“Maliciously secure matrix multiplication with applications to private
deep learning,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.,
2020, pp. 31–59.

[21] S. Balla and F. Koushanfar, “HELiKs: HE linear algebra kernels for
secure inference,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2023, pp. 2306–2320.

[22] J. Zhu, S. Li, and J. Li, “Information-theoretically private matrix
multiplication from MDS-coded storage,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 1680–1695, 2023.

[23] R. Hiromasa, M. Abe, and T. Okamoto, “Packing messages and optimiz-
ing bootstrapping in GSW-FHE,” IEICE Trans. Fundamentals Electron.,
Commun. Comput. Sci., vol. 99, no. 1, pp. 73–82, 2016.

[24] Y. Bai, X. Shi, W. Wu, J. Chen, and Y. Feng, “SeIMC: A GSW-
based secure and efficient integer matrix computation scheme with
implementation,” IEEE Access, vol. 8, pp. 98383–98394, 2020.

[25] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Proc. CRYPTO, 2013, pp. 75–92.

[26] D. H. Duong, P. K. Mishra, and M. Yasuda, “Efficient secure matrix
multiplication over LWE-based homomorphic encryption,” Tatra Moun-
tains Math. Publications, vol. 67, no. 1, pp. 69–83, Sep. 2016.

[27] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Secure statistical analysis using RLWE-based homomorphic
encryption,” in Proc. ACISP, 2015, pp. 471–487.

[28] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“New packing method in somewhat homomorphic encryption and its
applications,” Secur. Commun. Netw., vol. 8, no. 13, pp. 2194–2213,
Sep. 2015.

[29] P. K. Mishra, D. H. Duong, and M. Yasuda, “Enhancement for
secure multiple matrix multiplications over ring-LWE homomorphic
encryption,” in Proc. ISPEC, 2017, pp. 320–330.

[30] X. Zheng, H. Li, and D. Wang, “A new framework for fast homomorphic
matrix multiplication,” Cryptology ePrint Archive, vol. 1, p. 1649, Apr.
2023.

[31] V. Strassen, “Gaussian elimination is not optimal,” Numerische Math.,
vol. 13, no. 4, pp. 354–356, Aug. 1969.

[32] S. Halevi and V. Shoup, “Algorithms in HElib,” in Proc. Annu. Cryptol.
Conf., 2014, pp. 554–571.

[33] W.-J. Lu, S. Kawasaki, and J. Sakuma, “Using fully homomor-
phic encryption for statistical analysis of categorical, ordinal and
numerical data,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2017,
pp. 1–12.

[34] S. Wang and H. Huang, “Secure outsourced computation of multi-
ple matrix multiplication based on fully homomorphic encryption,”
KSII Trans. Internet Info Syst., vol. 13, no. 11, pp. 5616–5630,
2019.

[35] D. Rathee, P. K. Mishra, and M. Yasuda, “Faster PCA and linear
regression through hypercubes in HElib,” in Proc. Workshop Privacy
Electron. Soc., Jan. 2018, pp. 42–53.

[36] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2018, pp. 1209–1222.

[37] J. Jang et al., “Privacy-preserving deep sequential model with matrix
homomorphic encryption,” in Proc. ACM Asia Conf. Comput. Commun.
Security, 2022, pp. 377–391.

[38] P. Rizomiliotis and A. Triakosia, “On matrix multiplication with homo-
morphic encryption,” in Proc. Cloud Comput. Secur. Workshop, Nov.
2022, pp. 53–61.

[39] J. Chiang, “Volley revolver: A novel matrix-encoding method
for privacy-preserving neural networks (inference),” 2022,
arXiv:2201.12577.

[40] H. Huang and H. Zong, “Secure matrix multiplication based on
fully homomorphic encryption,” J. Supercomput., vol. 79, no. 5,
pp. 5064–5085, Mar. 2023.

[41] L. Zhu, Q. Hua, Y. Chen, and H. Jin, “Secure outsourced matrix
multiplication with fully homomorphic encryption,” in Proc. ESORICS,
2023, pp. 249–269.

[42] J. Gao and Y. Gao, “GMS: An efficient fully homomorphic encryption
scheme for secure outsourced matrix multiplication,” J. Supercomput.,
vol. 80, no. 18, pp. 26435–26461, Dec. 2024.

[43] G. C. Fox, S. W. Otto, and A. J. G. Hey, “Matrix algorithms on a
hypercube I: Matrix multiplication,” Parallel Comput., vol. 4, no. 1,
pp. 17–31, Feb. 1987.

[44] M. Babenko et al., “A comparative study of secure outsourced matrix
multiplication based on homomorphic encryption,” Big Data Cognit.
Comput., vol. 7, no. 2, p. 84, Apr. 2023.

[45] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn., 2021, pp. 587–617.

[46] X. Ma, C. Ma, Y. Jiang, and C. Ge, “Improved privacy-preserving PCA
using optimized homomorphic matrix multiplication,” Comput. Secur.,
vol. 138, Mar. 2024, Art. no. 103658.

[47] N. Genise, C. Gentry, S. Halevi, B. Li, and D. Micciancio,
“Homomorphic encryption for finite automata,” in Proc. ASIACRYPT,
2019, pp. 473–502.

[48] D. Ö. Simsek and M. Cenk, “Faster secure matrix multiplication with
the BGV algorithm,” in Proc. 16th Int. Conf. Inf. Secur. Cryptol., Oct.
2023, pp. 1–5.

[49] J. Hu, F. Wang, and K. Chen, “Faster matrix approximate homomorphic
encryption,” Comput. Standards Interface, vol. 87, Jan. 2024, Art. no.
103775.

[50] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, p. 34, 2009.

[51] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, pp. 1–35, Nov.
2013.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

https://ia.cr/2012/144
https://github.com/microsoft/SEAL

1404 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

[52] F. T. Leighton, Introduction to Parallel Algorithms and Architectures.
San Mateo, CA, USA: Morgan Kaufmann, 1992.

[53] J. Chen, L. Yang, W. Wu, Y. Liu, and Y. Feng. (2024). Homomor-
phic Matrix Operations Under Bicyclic Encoding. [Online]. Available:
https://ia.cr/2024/1762

[54] J. Alman and V. V. Williams, “A refined laser method and faster
matrix multiplication,” in Proc. SIAM Symp. Discrete Algorithms, 2021,
pp. 522–539.

[55] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” J. Math. Cryptol., vol. 9, no. 3, pp. 169–203, Oct.
2015.

Jingwei Chen received the Ph.D. degree in com-
puter science from the University of Chinese
Academy of Sciences in 2013. He is currently an
Associate Professor with Chongqing Institute of
Green and Intelligent Technology, CAS. His research
focus on symbolic computation, lattice-based cryp-
tography, and privacy-preserving computing.

Linhan Yang is currently pursuing the master’s
degree with Chongqing Jiaotong University. His
main research areas are homomorphic encryption
and privacy computing.

Wenyuan Wu received the Ph.D. degree from the
Department of Applied Mathematics, University of
Western Ontario, Canada, in 2007. He is currently
a Professor, a Ph.D. Supervisor, and the Direc-
tor of the Center for Automated Reasoning and
Cognition, Chongqing Institute of Green and Intel-
ligent Technology, CAS. His main research areas
include artificial intelligence, automated reasoning,
and privacy-preserving computing.

Yang Liu is currently an Associate Professor with
Chongqing Jiaotong University. Her research areas
include formal verification for software systems,
artificial intelligence, and information security.

Yong Feng is currently a Professor, a Ph.D. Super-
visor, and the Director of the Institute of Electronic
Information Technology, Chongqing Institute of
Green and Intelligent Technology, CAS. His main
research areas include automated reasoning and
privacy-preserving computing.

Authorized licensed use limited to: CHENGDU BRANCH OF THE NATIONAL SCIENCE LIBRARY CAS. Downloaded on February 04,2025 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

https://ia.cr/2024/1762

