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Abstract. In the case of standard LWE samples (A,b = sA+ e), A is
typically uniformly over Z

n×m
q . Under the DLWE assumption, the condi-

tional distribution of s|(A,b) and s is expected to be consistent. How-
ever, in the case where an adversary chooses A adaptively, the dispar-
ity between the two entities may be larger. In this work, our primary
focus is on the quantification of the Average Conditional Min-Entropy
H̃∞(s|sA+ e) of s, where A is chosen by the adversary. Brakerski and
Döttling answered the question in one case: they proved that when s
is uniformly chosen from Z

n
q , it holds that H̃∞(s|sA+ e) ∝ ρσ(Λq(A)).

We prove that for any d ≤ q, when s is uniformly chosen from Z
n
d or

is sampled from a discrete Gaussian distribution, there are also similar
results.

As an application of the above results, we improved the multi-key
fully homomorphic encryption [6] and answered the question raised at
the end of their work positively: we have GSW-type ciphertext rather
than Dual-GSW, and the improved scheme has shorter keys and cipher-
texts.

Keywords: Leftover Hash Lemma · Leakage resilient cryptography ·
Multi-key FHE

1 Introduction

Secure multi-party computation (MPC) [18], Threshold fully homomorphic
encryption (ThFHE) and Multi-key fully homomorphic encryption (MKFHE)
[13] provide technical support for computing tasks involving multiple users.
Depending on the assumptions, the techniques mentioned above can be divided
into two categories: the first with setup (trusted third party, common reference
string (CRS)), while the second without setup (plain model).

Compared to schemes or protocols under the plain model, those schemes that
involve a trusted third party or CRS are much simpler and more efficient, partic-
ularly during the initialization phase. However, some people believe that intro-
ducing such assumptions seems like cheating (since there is such a trusted third
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party, why not put everyone’s data in his hands and then return the results to
all parties.) Therefore, building cryptographic primitives under the plain model
has also become a demand for some people.

The key issue here is that the initialization of MPC, Th-FHE, or MKFHE
protocols, such as key generation, often relies on some common parameters. If
these parameters come from a trusted third party, their integrity can be guar-
anteed. If there is no trusted third party or CRS, then the initialization of the
protocol is usually an interactive process involving users. At this time, the relia-
bility of the data cannot be guaranteed, which may result in the compromise of
user privacy. For example, in the MKFHE scheme [6], parties need to multiply
their own private key s with a matrix A generated by another party and make sA
public in order to support “ciphertext expansion”. In the oblivious transfer pro-
tocol [4], the first round message y = tA+e of the sender is composed of its own
secret t multiplied by A generated by the receiver plus a small error. Similarly,
the unbounded MPC protocol [1] also requires the LWE samples y = sA+ e to
be made public, where A is generated by the adversary.

1.1 Motivation

In the MKFHE scheme [6], assuming there are k parties, in order to support
subsequent ciphertext expansion, each party needs to multiply their own private
key s by the public keys {Ai}i∈[k−1] of the other k − 1 parties and make {bi =
sAi}i∈[k−1] public. In order to quantify the average conditional min-entropy
H̃∞(s|{bi}i∈[k−1]) of s ∈ {0, 1}m after disclosing {bi = sAi}k−1, the leakage
in the worst case was estimated. For bi ∈ Z

n
q , {bi = sAi}i∈[k−1] leaks s with

a maximum of (k − 1)n log q bits. According to the proof in [6], based on the
Leftover Hash Lemma (LHL), in order to ensure that the statistical distance
between the ciphertext and the uniform distribution is less than 1

2λ , m should
at least satisfy m − (k − 1)n log q ≥ log q + 2λ.

In [4], another “active leakage” model was applied as s|b = sA + e. To
ensure that the entropy of s remains sufficient after b = sA + e is disclosed,
it proved that H̃∞(s|sA+ e) ≥ − log( 1

ρσ(Λq(A)) + 2−m). We believe that the
model s|sA+ e is a better “active leakage” model compared to s|sA, because
H̃∞(s|sA+ e) establishes a relationship with Λq(A). Additionally, the loss ratio
is O( 1

log q ) provided that Λq(A) has enough short vectors, whereas the lat-
ter is O( 1n ). Based on this, the work [4] constructed the first post-quantum
secure oblivious transfer protocol under the plain model that can resist mali-
cious receivers.

So far, we have seen two “active leakage” models: s|sA and s|sA+ e. The
former quantifies the conditional entropy H̃∞(s|sA) of s ∈ {0, 1}∗ in a more rudi-
mentary way, while the latter characterizes H̃∞(s|sA+ e) based on the proper-
ties of lattices, but is limited to s ← Z

n
q . We are interested in whether there is

a similar result for any d ≤ q, where s ← Z
n
d , or s is sampled from a discrete

Gaussian distribution.
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Such a requirement is not baseless. In the LWE-like sample sA+ e, it is
sometimes convenient and necessary to bound the norm of s. In order to sup-
port bootstrapping in FHE, it is necessary to encrypt the private key s. If s is
uniformly distributed over Zq, how can it be filled into the plaintext space? One
method is to bit-decomposition the key before encrypting it. For example, the
work [8,12] adopt binary key to fill into the plaintext space in order to realize
bootstrapping more quickly and control the growth of noise. Another approach
is to limit the norm of the s to a small range. Therefore, [2] reduced the LWE
samples with discrete Gaussian secrets to the LWE samples with uniform secrets.
MKFHE scheme [7] requires that s be sampled from the discrete Gaussian dis-
tribution in order to mitigate the noise introduced by the re-linearization after
multiplication of the ciphertext. Furthermore, [17] proved that Regev’s encryp-
tion scheme is leakage-resilient when the private key s is taken from a small
uniform range. The work [17] only provided a reduction for s ∈ {0, 1}∗, but the
result holds for all sufficiently small s. In addition, the paper [1] utilizes the result
of [4] to defend against semi-malicious adversaries. However, in their proposed
scheme, s is drawn from a discrete Gaussian distribution.

Therefore, if we can characterize H̃∞(s|sA+ e) for any d ≤ q, where s ← Z
n
d ,

or s is taken from a discrete Gaussian distribution, we believe that this result
can be applied in many ways. Specifically, based on this result, we optimized the
MKFHE [6], resulting in shorter keys and smaller ciphertexts. We present our
results in the following section.

1.2 Our Results

For LWE samples whose secrets are sampled from discrete Gaussian distribution,
we have the following result.

Theorem 1. Let n, q, m = O(n log q) be integers, and 0 < σ < q
2
√

m+n
. For

the given matrix Ã = (Ā,A) ∈ Z
n×n
q × Z

n×m
q , where Ā is invertible, let A′ =

−Ā−1A, s ← DZn,σ, e ← DZm,σ. It holds that

H̃∞(s|sA′ + e) ≥ − log

(
1

ρσ(Λq(Ã))
+ 2−(m+n)

)

For LWE samples whose secrets and noise are sampled from bounded uniform
distribution, we have the following result.

Theorem 2. Let n, q, d, m = O(n log q) and d < q be integers. For a given
matrix Ã = (Ā,A) ∈ Z

n×n
q × Z

n×m
q , let t ← Z

n
q , s ← Z

n
d , e ← Z

m
d , b̄ = tĀ − s,

b = tA+ e, A′ = −Ā−1A. It holds that

H̃∞(s|sA′ + e) ≥ log(|Λq(Ã)
⋂

Vb̃(d)|)

where b̃ = (b̄,b), Vb̃(d) is the hypercube with b̃ as the center point and d as the
side length.
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For the LWE samples whose secrets are sampled from bounded uniform distri-
bution while noise are sampled from discrete Gaussian distribution, we present
a more general results of Lemma 3.2 in [4] (Lemma 3.2 is a special case of our
Theorem 3).

Theorem 3. Let d, q, 0 < d ≤ q be integers, A ∈ q
dZ

n×m
d , m = O(n log d) and

a parameter 0 < σ < d√
m

. Let s ← Z
n
d and e ← D q

dZm,σ, then it holds that

H̃∞(s|sA+ e) ≥ − log(
1

ρσ(Λq(A))
+ 2−m)

Clearly, when d = q, the above Theorem degenerates to Lemma 3.2 in [4]. In
addition, as an independent result, we also proved the regularity of the universal
hash function mapped to a prime order group and its Cartesian product (Lemma
6 and Corollary 2) in the full version [10] of this work. This result will be used
in the security proof of our improved scheme.

As an application of the above results, we optimized the MKFHE scheme in
[6]. In particular, combined with the proof trick of [17] for the LWE variant of
binary keys, we provide a positive answer to the question raised at the end of
[6]: the ciphertext of our improved scheme is constructed in a GSW-like manner,
rather than Dual GSW. In addition, compared with [6] and [14], our ciphertext
and key are shorter, as shown in Table 1.

Table 1. Complexity

Scheme Key size Ciphertext size Hom-multiplication Communication in setup Setup
[14] O(n2 log2 q) O(n2 log2 q) O(k3n3 log2 q) - CRS
[6] O(kn2 log2 q) O(k2n2 log4 q) O(k6n3 log5 q) O(kn2 log2 q) -

our scheme O(n2 log2 d) O(n2 log2 d) O(k3n3 log2 d) O(n2 log2 d) -
k, n, q denotes number of parties, LWE dimension, modulus respectively. d is defined in our scheme
with d = q/poly(λ). The key and ciphertext are counted in bits. The Hom-multiplication column
counts the number of multiplications on Zq required for a homomorphic multiplication. The Commu-
nication in setup column counts the communication traffic required for the interactive key generation
phase.

1.3 Related Works

The work of Brakerski and Döttling [5] on the hardness of LWE on general
entropic distributions was dedicated to proving the hardness of entropy LWE:
for a key distribution S with support over Z

n, assuming that H̃∞(s|s+ e) is
large enough, then the entropy LWE is hard (equivalent to the generalization
of Goldwasser et al’s work [17], which proved that when the key s is taken
from {0, 1}, and H̃∞(s) is large enough, the binary LWE is anti-leakage). We
must point out that our work is dedicated to characterizing the lower bound of
H̃∞(s|sA+ e), where A may not be uniformly distributed. This type of leakage
model is more prevalent in multi-party cooperation protocols, such as oblivious
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transfer or MKFHE. The leakage model of H̃∞(s|s+ e) is more in line with the
side channel attack (in our work, it becomes passive leakage).

Therefore, we believe that these two works should complement each other.
Their research focuses on the hardness of entropy LWE, and considers how to
quantify H̃∞(s|s+ e), which provides more confidence for anti-leakage cryptog-
raphy. However, our work focuses on characterizing the active leakage of s|sA+ e
(there should be no side channel to obtain s from sA+ e), which provides a tool
for further weakening the setup (without CRS, trusted third party) in the MPC
and MKFHE.

2 Preliminaries

2.1 Notation

Let negl(λ) be a negligible function parameterized by λ. Lowercase bold letters
such as v, unless otherwise specified, represent vectors. Vectors are typically
represented as row vectors, while matrices are denoted by uppercase bold letters
such as M. Let k be an integer and [k] be the set of integers {1, · · · , k}. If X
is a distribution, then a ← X denotes that the value a is chosen according to
the distribution X. If X is a finite set, then a ← X denotes that the value of a
is uniformly sampled from X. For two distributions X and Y , we use X ≈s Y
to represent that X and Y are statistically indistinguishable, while X ≈c Y
represents that they are computationally indistinguishable.

Gadget Decomposition over q
d

Zd . Let d ≤ q be two integers. We will consider
decomposing the elements of q

dZd into binary. Let g = q
d (1, 2, . . . , 2

l−1) where
l = �log d�. For any a ∈ q

dZd, let a = q
d · t, where t ∈ Zd. We define g−1(a) =

{0, 1}l as the decomposition of t. For any a ∈ q
dZd, it holds that g · g−1(a) =

a. Furthermore, for M ∈ q
dZ

m×n
d , let G = Im ⊗ g, it holds that G−1(M) ∈

{0, 1}ml×n and GG−1(M) = M.

Average Conditional Min-Entropy (in [4]). Let X be a random-variable
supported on a finite set X , and let Z be a random variable supported on a
finite set Z. The average-conditional min-entropy H̃∞(X|Z) of X given Z is
defined as

H̃∞(X|Z) = − log
(

Ez

[
max
x∈X

Pr[X = x|Z = z]
])

.

2.2 Some Result on the Lattice

Theorem 4. Let Λ be a lattice, V be the Voronoï-cell of Λ, t, t′ are two vectors
in span(Λ), then the following three statements are equivalent

1. t′ is the shortest vector in t+ Λ
2. t′ ∈ (t+ Λ)

⋂
V

3. v = t − t′ ∈ Λ is the nearest lattice point to t.
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Theorem 5 (in [3]). For any lattice Λ ∈ R
m, parameter σ > 0 and u ≥ 1√

2π
it

holds that
ρσ(Λ\uσ

√
mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√
2πeu · e−πu2

).

Setting Λ = Z
m and u = 1 in Theorem 5, we obtain the following Corollary.

Corollary 1. Let σ > 0 and x ← DZm,σ. Then it holds that ||x|| ≤ σ · √
m,

except with probability 2−m.

Theorem 6 (The Gaussian Heuristic). Let L be a random lattice, for all
sufficiently large S ⊂ R

n, it holds that∣∣∣S ⋂
L

∣∣∣ ≈ vol(S)/det(L)

2.3 Leakage Model

The concept of leakage models evolved from leakage-resistant encryption. Anti-
leakage encryption focuses on the semantic security of ciphertext when the key
is lossy. It mainly prevents side-channel attacks and is of great significance to
the specific implementation of cryptographic schemes. The leakage model mainly
quantifies the lower bound of the conditional entropy of key s in various leakage
scenarios, which is a precondition for leakage-resistant encryption. There are
currently two main leakage models. One is a hash function-like leakage model
s|sA introduced by [17], where A is generated by the adversary, s ← {0, 1}∗.
The other is the LWE-like leakage model s|sA+ e introduced by [4], where A is
generated by the adversary, s ← Z

n
q .

2.4 Learning with Errors

The Learning With Errors (LWE) problem was introduced by Regev [16]. In
general, we are primarily interested in its decision version.

Definition 1 (Decision-LWE). For n,m, q ∈ N and for a distribution χ sup-
ported over Z, the DLWEn,m,q,χ is to distinguish the following distribution

– D0 : the jointly distribution (A, z) ∈ (Zn×m
q × Z

m
q ) is sampled by A ←

Z
n×m
q , z ← Z

m
q .

– D1 : the jointly distribution (A,b = sA + e) ∈ (Zn×m
q × Z

m
q ) by m samples

of As,χ

It is often considered the hardness of solving DLWEn,m,q,χ for any m =
poly(n log q). The matrix version of this problem ask to distinguish (A,SA+E)
from (A,U) where S ← Z

k×m
q , E ← χk×m and U ← Z

k×m
q , whose hardness

for any k = poly(n) can be established from DLWEn,m,q,χ via a routine hybrid-
argument.

As shown in Regev [16], for certain module q and discrete Gaussian error
distribution χ with parameter σ = αq ≥ 2

√
n, the DLWEn,m,q,χ is true as long

as certain worst-case lattice problem is hard to solve using a quantum algorithm.
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2.5 Road-Map

In Sect. 3, we outline our approach and techniques. In Sect. 4, we proved a more
general result for H̃∞(s|sA+ e). In Sect. 5, we presented our improved MKFHE
scheme.

3 Technical Overview

In this section, we will briefly outline our technical approach, focusing on our
ideas and providing readers with some intuition. A detailed description will be
given in the subsequent section. For the given A ∈ Z

n×m
q , and y = sA+ e, where

s ← Z
n
q , e ← DZm,σ, by the definition of Average Conditional Min-Entropy 2.1

H̃∞(s|y = sA+ e) = − log
(
Ey

[
max
s∗ Pr

s,e
[s = s∗|y = sA+ e]

])
where s∗ is the point maximizes the conditional probability Pr

s,e
[s = s∗|y = sA+

e]. The work [4] notes that when s is uniformly chosen from Z
n
q , by Bayes’ rule,

Pr
s,e

[s = s∗|y = sA+ e] = Pr
s,e

[y = sA+ e | s = s∗] · Pr [s = s∗]
Pr
s,e

[y = sA+ e]

= Pr
e
[e = y − s∗A] · Pr [s = s∗]

∑
s′ Pr

e
[y = sA+ e | s = s′] Pr [s = s′]

= Pr
e
[e = y − s∗A] · q−n

∑
s′ Pr

e
[e = y − s′A] · q−n

=
Pr
e
[e = y − s∗A]

∑
s′ Pr

e
[e = y − s′A]

the denominator is a constant, that is, when s∗A is the point closest to y,
conditional probability Pr

s,e
[s = s∗|y = sA + e] is the largest. The events that

s∗A is the lattice point closest to y and e ∈ V , are equivalent, where V is
the discrete Voronoï cell of s∗A. Therefore, they can transform the problem
from finding the probability Pr

s,e
[s = s∗|y = sA + e] to finding the probability

Pr(e ∈ V ).

LWE with Discrete Gaussian Secrets. However, when s is sampled from a
discrete Gaussian distribution, we cannot directly apply the above method to
quantify the probability Pr

s,e
[s = s∗|y = sA + e]. The reason is as follows, also

according to Bayes’ rule

Pr
s,e

[s = s∗|y = sA+ e] = Pr
s,e

[y = sA+ e | s = s∗] · Pr [s = s∗]
Pr
s,e

[y = sA+ e]

= Pr
s,e

[e = y − s∗A] · Pr [s = s∗]
∑

s′ Pr
s,e

[y = sA+ e | s = s′] Pr [s = s′]
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We cannot proceed to the next step because, when s is drawn from a discrete
Gaussian distribution, we cannot determine the probability that s equals s∗. At
this time, the point s∗A that maximizes the probability Pr

s,e
[s = s∗|y = sA+e] is

not necessarily the lattice point closest to y. This is the challenge of determining
the probability Pr

s,e
[s = s∗|y = sA+ e] when s is drawn from a discrete Gaussian

distribution.
By the reduction from the LWE with uniform secrets to the LWE with Gaus-

sian secrets, the noise of the former becomes the secrets of the latter. Therefore,
in order to quantify the entropy of the latter secrets, we can turn to the entropy
of the noise. By definition

H̃∞(e|y = sA+ e) = − log
(
Ey

[
max
e∗ Pr

s,e
[e = e∗|y = sA+ e]

])

where e∗ is the point that maximizes the conditional probability Pr
s,e

[e = e∗|y =

sA + e]. Given A and y, when s∗A is the closest lattice point to y, ||e|| =
||y − s∗A|| is minimized. As e is discrete Gaussian, it holds that e∗ = y − s∗A.
Events e = e∗|y = sA+ e and s = s∗|y = sA+ e are equivalent, as shown in
Fig. 1. Furthermore, it holds that Pr

s,e
[e = e∗|y = sA + e] = Pr[e ∈ V ], where

V is the Voronoï cell of the lattice point s∗A. Therefore, based on the previous
result Pr(e ∈ V ) < 1

ρσ(Λq(A)) [4], when s is drawn from the discrete Gaussian
distribution, we can quantify the conditional entropy of s.

LWE with Bounded Uniform Secrets and Noise. Let d < q be an integer,
when the secret s is sampled uniformly from Z

n
d . We cannot apply the above

method directly. This is because sA mod q cannot traverse all lattice points.
Let

S = {x ∈ Z
m : x = sA mod q, s ∈ Z

n
d}

obviously, S is a subset of the q-ary lattice Λq(A) = {x ∈ Z
m : x = sA

mod q, s ∈ Z
n
q } (not necessarily a sub-lattice, it may not be closed). For any

given y = sA+ e, where s ← Z
n
d , e ← DZm,σ, according to Bayes’ Rule, it holds

that Pr(s = s∗|y = sA+ e) ∝ Pr(e = y − s∗A). Now, we need to find a lattice
point on S that is closest to y. There are two possible cases

– The nearest lattice point to y on S is the same as the nearest lattice point to
y on the Λq(A).

– These two points are different

As shown in Fig. 2, we interpret it in a two-dimensional lattice.
Obviously, in the second case, y falls outside the Voronoï cell of s∗A and e /∈

V . Therefore, we cannot use Lemma 3.2 in [4] to obtain the H̃∞(s|sA+ e) lower
bound. This is because sA mod q does not necessarily traverse all the lattice
points when limiting s to a small range. This is the challenge of determining the
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sA

s∗Ayy s∗Ayyyyyyy

Fig. 1. s∗A is the lattice point closest to y, at this time, e∗ happens to fall in the
Voronoï cell of s∗A

probability Pr
s,e

[s = s∗|y = sA + e] when s is sampled from a bounded uniform

distribution.
Similar to the case where the secret is drawn from a discrete Gaussian distri-

bution, we can use the reduction from LWE with a uniform secret to LWE with
a Gaussian secret. Given the LWE samples whose noise is taken from a bounded
uniform distribution, we can convert it into the LWE samples whose secret is
taken from a bounded uniform distribution. Similarly, in order to quantify the
secret’s entropy, we can refer to the entropy of the noise. By the chain rule of
entropy, H(X,Y ) = H(X) + H(Y |X). Therefore, for the given A and y, the
entropy of the e is equal to the entropy of the secret s. By Bayes’ rule, the
entropy of the key can be determined directly, as the noise is both bounded and
uniform.

Pr
s,e

[s = s∗|y = sA+ e] =
Pr
s,e

[e = y − s∗A]∑
s′ Pr

s,e
[e = y − s′A]

=
1

|Λq(A)
⋂

Vy(d)|

The hypercube Vy(d) is defined as the cube with y as the center point and
d as the side length.

LWE with Bounded Uniform Secrets and Discrete Gaussian Noise.
We want to quantify H̃∞(s|y = sA + e) for any integer d ≤ q, when s is
chosen uniformly from Z

n
d and e is sampled from discrete Gaussian distribution.
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Fig. 2. Cases of the nearest point to y: Red points are in S. The left panel shows that
the closest point to y is on S, but the right panel clearly shows that the closest point
to y is not on S. (Color figure online)

Compromises must be made at this point; the lattice Λq(A) is dynamic. If S =
{x ∈ Z

m : x = sA mod q, s ∈ Z
n
d} is a lattice, a similar conclusion can be

obtained from Lemma 3.2 in [4].
We found that as A ∈ q

dZ
n×m, Λq(A) = {x ∈ q

dZ
m,x = sA mod q, s ∈ Z

n
d}

also be a lattice. It is actually a d-ary lattice defined over q
dZ

m. Therefore, for
such a lattice, when s ← Z

n
d (d ≤ q), we can still quantify H̃∞(s|y = sA+ e

mod q).

More Efficient MKFHE. The above three results tell us that when A is gen-
erated by an adversary, how much entropy of s remains after sA+ e is disclosed.
When s is lossy, in order to prove that the ciphertext generated by s is semanti-
cally secure, it is further necessary to prove the regularity of the hash function
mapped to the prime-order group. In this way, we can convert the LWE sample
with lossy secret s into a low-dimensional LWE sample (need to introduce the
circular security assumption). We use Theorem 3 to characterize the conditional
entropy of s because when s is taken from a discrete Gaussian distribution, we
do not know how to prove the regularity of the hash function defined by it. This
explains why our scheme is constructed on q

dZ.
The improvement on the MKFHE scheme [6] requires us to show that sA+ e

remains pseudorandom even when s is lossy, where s ← Z
n
d , A ← q

dZ
n×m
d ,

e ← D q
dZm,σ. Here, we borrow the proof techniques in [17] from binary LWE

samples to low-dimensional standard LWE samples. Let A = BC+E, where
B ← q

dZ
n×l, C ← Z

l×m
d , and E ← Dn×m

q
dZ,σ′ . It holds that

sA+ e = s(BC+E) + e = sBC+ sE+ e
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By the Leftover Hash Lemma, it is sufficient to show that the hash function
determined by B is universal and that s has enough conditional entropy. This
implies that (B, sB) ≈ (B,u). In general, when s ∈ {0, 1}n, for a uniformly
selected B from Gn×l(G is a general finite Abelian group), the hash function
determined by it is typically universal. However, when s ∈ Z

n
d , the regularity

of the hash function mapped to the general finite Abelian group cannot be
guaranteed (there is a zero divisor). However, when G is isomorphic to the prime
order group, the above hash functions are also universal.

Let t = sB, then sA+ e = tC+ sE+ e, where tC+ e are l dimension LWE
sample. We can consider tC+ sE+ e as the ciphertext of the dual-Regev encryp-
tion scheme, where the public key, private key, and plaintext are denoted as
(B, t), s, and sE, respectively. In other words, the encrypted data is related
to the private key. If it is assumed that the dual-Regev encryption scheme is
Circular Security , then tC+ sE+ e should be computationally indistinguish-
able from the uniform distribution (The Circular Security should be a widely
accepted assumption, which is used in FHE and key switch). We give the proof
in the full version of this work [10]. Therefore, we can still use the GSW type to
construct MKFHE.

4 Lattice-Based, More General Anti-leakage Model

In Sect. 4.1, we first quantify the anti-leakage properties of LWE, where the
secrets are drawn from a discrete Gaussian distribution. However, when the
secrets are uniform in a small range, the situation is different. In Sect. 4.2, we
consider the case when s is drawn from a bounded uniform distribution. In
Sect. 4.3, we describe a lattice contained in q

dZ
m, then in Sect. 4.4, we prove the

anti-leakage property of the LWE samples on this lattice.

4.1 The Leakage-Resilient of LWE Samples with Discrete Gaussian
Secrets

When s is drawn from a discrete Gaussian distribution, we cannot directly apply
the proof in [4]. At this time, we need to use the reduction technique [2] from
the LWE with discrete Gaussian secrets to the LWE with uniform secrets.

Consider the following game

– Alice picks matrix Ã = (Ā,A) ∈ Z
n×n
q × Z

n×m
q , where Ā is invertible, sends

Ã it to Bob.
– After receiving Ã, Bob generates t ← Z

n
q , s ← DZn,σ, e ← DZm,σ, b̄ = tĀ−s,

b = tA+ e, A′ = −Ā−1A, sends (A′,b′ = b+ b̄A′) to Alice.

The above game essentially reduces discrete Gaussian LWE to standard LWE.
Apparently (A′,b′ = sA′ + e) are the LWE samples with discrete Gaussian
secrets, but A′ may not be uniform because Ã is chosen by Alice. Now, we
quantify H̃∞(s|sA′ + e).
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Theorem 7. Let n, q, m = O(n log q) be integers, and 0 < σ < q
2
√

m+n
. For

the given matrix Ã = (Ā,A) ∈ Z
n×n
q × Z

n×m
q , where Ā is invertible, let A′ =

−Ā−1A, s ← DZn,σ, e ← DZm,σ. It holds that

H̃∞(s|sA′ + e) ≥ − log

(
1

ρσ(Λq(Ã))
+ 2−(m+n)

)

Proof. Let ẽ = (−s, e), t ← Z
n
q , b̄ = tĀ− s, b = tA+ e, b̃ = (b̄,b). According

to the definition of average min-entropy, we have

H̃∞(ẽ|b̃) = H̃∞(ẽ|b̃ = tÃ+ ẽ) = − log
(
Eb̃

[
max
ẽ∗

Pr
t,ẽ

[ẽ = ẽ∗|b̃ = tÃ+ ẽ]
])

Obviously, ẽ that maximizes the conditional probability Pr[ẽ = ẽ∗|b̃ = tÃ+ ẽ]
must fall in the Voronoï cell of the lattice point that nearest to b̃, that is ẽ∗ =
b̃ − t∗Ã (t∗Ã is the nearest lattice point to b̃). By Theorem4, it holds that
Pr[ẽ = ẽ∗|b̃ = tÃ+ ẽ] = Pr[ẽ mod q ∈ V ], where V ∈ Z

m+n is the discretized
Voronoï cell of Λq(Ã). By Theorem 5, it holds that ||ẽ|| ≤ σ · √

m + n < q/2
except with probability 2−(m+n), thus Pr[ẽ mod q ∈ V ] ≤ Pr[ẽ ∈ V ]+2−(m+n).
By the Lemma 3.1 in [4], it holds that Pr[ẽ ∈ V ] ≤ ρσ(V )

ρσ(Z(m+n))
≤ 1

ρσ(Λq(Ã))
,

therefore Pr[ẽ mod q ∈ V ] ≤ 1
ρσ(Λq(Ã))

+ 2−(m+n). We have

H̃∞(ẽ|b̃) = − log
(
Eb̃ [Pr[ẽ mod q ∈ V ]]

)
= − log (Pr[ẽ mod q ∈ V ])

≥ − log

(
1

ρσ(Λq(Ã))
+ 2−(m+n)

)
(1)

According to the chain rule of entropy: H(X,Y ) = H(X) + H(Y |X), we have

H̃∞((−s, e)|sA′ + e) = H̃∞(−s, e, sA′ + e) − H̃∞(sA′ + e) (2)

Because A′ is public, thus H̃∞(e|(−s, sA′ + e)) = 0. By the chain rule, we have

H̃∞(−s, e, sA′ + e) = H̃∞(−s, sA′ + e) (3)

Combining (2), (3) we have

H̃∞((−s, e)|sA′+e) = H̃∞(−s, sA′+e)−H̃∞(sA′+e) = H̃∞(−s|sA′+e) (4)

Because sA′ + e = b+ b̄A′, we have

H̃∞((−s, e)|sA′ + e) ≥ H̃∞((−s, e)|b̃) (5)

Combining (1), (4), (5) we have

H̃∞(s|sA′ + e) ≥ − log

(
1

ρσ(Λq(Ã))
+ 2−(m+n)

)

�
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4.2 The Leakage-Resilient of LWE Samples with Bounded Uniform
Secrets and Noise

In this section, we first define the problem of distinguishing between LWE sam-
ples and uniform distributions where the secret and noise are taken from a
bounded uniform distribution. It is no less hard than distinguishing standard
LWE samples and uniform distribution (we give the proof in the full version
[4]). Then we consider the anti-leakage properties of such LWE samples.

Definition 2. Let n,m, q be integers, χ be the noise distribution in the standard
problem DLWEn,m,q,χ bounded by Bχ. Let λ be the security parameter, d ≤ q be
an integer, satisfying Bχ

d = negl(λ). The Bounded-DLWEn,m,d,q,χ problem is to
distinguish the following distribution

– D0 : the joint distribution (A, z) ∈ (Zn×m
q × Z

m
q ) is sampled by A ← Z

n×m
q ,

z ← Z
m
q .

– D1 : the joint distribution (A,b) ∈ (Zn×m
q ×Z

m
q ) is computed by A ← Z

n×m
q ,

b = sA+ e mod q, where s ← Z
n
d , e ← Z

m
d .

Consider the following game

– Alice picks matrix Ã = (Ā,A) ∈ Z
n×n
q × Z

n×m
q , where Ā is invertible, sends

(A, Ā) it to Bob.
– After receiving Ã, Bob generates t ← Z

n
q , s ← Zn

d , e ← Z
m
d , b̄ = tĀ − s,

b = tA+ e, A′ = −Ā−1A, sends (A′,b′ = b+ b̄A′) to Alice.

Apparently (A′,b′ = sA′ + e). The above game essentially transforms the
LWE samples with bounded noise to the LWE samples with bounded secrets, but
A′ may not be uniform since Ã is chosen by Alice. Now, we quantify H̃∞(s|sA′+
e).

Theorem 8. Let n, q, d, m = O(n log q) be integers. For a given matrix Ã =
(Ā,A) ∈ Z

n×n
q × Z

n×m
q , let t ← Z

n
q , s ← Z

n
d , e ← Z

m
d , b̄ = tĀ − s, b = tA+ e,

A′ = −Ā−1A. It holds that

H̃∞(s|sA′ + e) ≥ log(|Λq(Ã)
⋂

Vb̃(d)|)

where b̃ = (b̄,b), Vb̃(d) is the hypercube with b̃ as the center point and d as the
side length.

Proof. Let ẽ = (−s, e), according to the definition of average min-entropy, it
holds that

H̃∞(t|b̃) = H̃∞(t|b̃ = tÃ+ ẽ) = − log
(
Eb̃

[
max
t̃∗

Pr
t,ẽ

[t = t∗|b̃ = tÃ+ ẽ]
])
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By Bayes’s rule, we have

Pr
t,ẽ

[t = t∗|b̃ = tÃ+ ẽ] = Pr
t,ẽ

[
b̃ = tÃ+ ẽ | t = t∗

]
· Pr [t = t∗]
Pr
t,ẽ

[b̃ = tÃ+ ẽ]

= Pr
ẽ

[
ẽ = b̃ − t∗Ã

]
· Pr [t = t∗]∑

t′ Pr
ẽ

[
b̃ = tÃ+ ẽ | t = t′

]
Pr [t = t′]

= Pr
ẽ

[
ẽ = b̃ − t∗Ã

]
· d−n∑

t′ Pr
ẽ

[
ẽ = b̃ − tÃ

]
· d−n

=
Pr
ẽ

[
ẽ = b̃ − t∗Ã

]
∑

t′ Pr
ẽ

[
ẽ = b̃ − t′Ã

] =
1

|Λq(Ã)
⋂

Vb̃(d)|

Thus, we have

H̃∞(t|b̃) = H̃∞(t|b̃ = tÃ+ ẽ) = log(|Λq(Ã)
⋂

Vb̃(d)|)

By the chain rule of entropy: H(X,Y ) = H(X) + H(Y |X), we have

H̃∞(t|b̃ = tÃ+ ẽ) = H̃∞(ẽ|b̃ = tÃ+ ẽ)

Thus, it holds that

H̃∞(s|sA′ + e) = H̃∞(ẽ|sA′ + e) ≥ H̃∞(ẽ|b̃ = tÃ+ ẽ) = log(|Λq(Ã)
⋂

Vb̃(d)|)

�

We can use the Gaussian heuristic |Λq(Ã)
⋂

Vb̃(d)| ≈ vol(Vb̃(d))/det(Λq(Ã)) to
estimate H̃∞(s|sA′ + e).

4.3 Lattice over q
d

Z
m

Let d, q ∈ Z and d ≤ q, A ∈ q
dZ

n×m, s ∈ Z
n
d . Let1

Λq(A) = {x ∈ q

d
Z

m : x = sA mod q, s ← Z
n
d}

It is easy to verify that Λq(A) forms a lattice, for any x1, x2 ∈ Λq(A), let x1 =
s1A mod q, x2 = s2A mod q, there exist x3 ∈ Λq(A) satisfying x3 = x1 + x2

mod q, where x3 = s3A mod q, s3 = s1 + s2 mod d. That is, Λq(A) is closed
under addition modulo q, and is a discrete additive subgroup of q

dZ
m.

It may be seen at a glance that Λq(A) is isomorphic to the d-ary lattice
(obtained by stretching d-ary lattice by a factor q

d ). Such as for any A ∈ q
dZ

n×m,

1 Here the definition of mod has been extended to take the remainder of a rational
number to an integer.
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let A = q
dA

′, where A′ ∈ Z
n×m, there is a bijection φ between Λd(A′) = {x′ ∈

Z
m : x′ = sA′ mod d, s ← Z

n
d} and Λq(A): for any x′ ∈ Λd(A′), let x′ = v+d·c,

where v ∈ Z
m
d , c ∈ Z

m, its image in Λq(A) is x = q
dv + q · c.

φ : Λd(A′) → Λq(A)

v + d · c �→ q

d
· v + q · c.

4.4 The Leakage-Resilient of LWE Samples with Bounded Uniform
Secrets and Gaussian Noise

For any d ≤ q, we provide the corresponding result when s is uniformly dis-
tributed on Z

n
d and e is sampled from discrete Gaussian distribution. As a com-

promise, the lattice Λq(A) should also be adjusted accordingly.

Theorem 9. Let q, 0 < d ≤ q, m = O(n log d) be integers. For a given matrix
A ∈ q

dZ
n×m, let 0 ≤ σ ≤ d

2
√

m
, s ← Z

n
d and e ← D q

dZm,σ. It holds that

H̃∞(s|sA+ e mod q) ≥ − log
(

1
ρσ(Λq(A))

+ 2−m

)

If d = q, the above Theorem degenerates into Lemma 3.2 in [4]. Its proof is the
same as [4]; for the sake of completeness, we list it in Appendix A.

5 Optimized Multi-key Fully Homomorphic Encryption
Scheme

As an application of our result in the previous section, we give an optimized
MKFHE scheme based on [6]. It must be pointed out that such optimization
can also be applied to [9,11,14,15] and other GSW-based MKFHE (constructed
on Z, can use the Leftover Hash Lemma to remove CRS). We choose [6] as an
example because it requires fewer changes, and the improved result is better.

5.1 An Improved “GSW-Style” MKFHE Based on [6]

Our optimized scheme is similar to [6], except that their scheme was based on
Dual-GSW (on Z), while ours is GSW type (on q

dZ), which will lead to different
plaintext encoding. Furthermore, their “active leakage” model is s|sA, while ours
is s|sA+ e. The improved scheme is defined as follows

– pp ← setup(1λ, 1k, 1L): On input security parameter λ, users number k =
poly(λ), circuit depth L, let n = poly(λ) be an integer, d = 2O(λL) be a
prime, m = n�log d�, q = d · poly(λ). Let χ be a noise distribution defined
over q

dZ, where e ← χ, ||e|| is bounded by Bχ with overwhelming probability.
Suitable choosing the above parameters to make the rational-DLWEn,m,d,q,χ

problem (Definition 7 in [10]) is infeasible, output pp = (k, n,m, d, q, χ).
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– (pki, ski) ← Gen(pp, i): Input pp, i, output the key pair (pki, ski) of party i,
where pki = (Ai,bi,i), Ai ← q

dZ
n×m
d , si ← Z

n
d , e ← χm, bi,i = siAi + e

mod q, ski = (si,−1).
– Auxki ← Auxiliary KeyGen(ski, {pkj}j∈[k]/i): Input the private key ski of party

i and other parties public keys {pkj}j∈[k]/i, output the Auxiliary key (as
needed for ciphertext expansion) Auxki = {bi,j}j∈[k]/i of party i, where bi,j =
siAj + ej .

– Ci ← Enc(pki, ui): Input public key pki, a plaintext ui ∈ {0, 1}, output

ciphertext Ci =
(
Ai

bi,i

)
· R+

(
0
e′

)
+ uiG, where e′ is sampled from χ′(n+1)l

defined over q
dZ satisfying ||eR/e′||∞ = negl(λ), R ← {0, 1}m×(n+1)l, l =

�log d�, G is a gadget matrix as defined in preliminary.
– u ← Dec(sk,C): Input ciphertext C, private key sk, let t = sk, wT =
(0, · · · , 0, d

2� · q
d ) ∈ q

dZ
n+1
d , γ = t · CG−1(wT ), output u =  γ

q/2�.

5.2 Security Under Semi-malicious Adversary

We note that the auxiliary key of i is Auxki = {bi,j = siAj + ej}j∈[k]/i,
where {Aj}j∈[k]/i is generated by the other k − 1 parties. Under the semi-
honest adversary, {Aj}j∈[k]/i are uniformly distributed over q

dZ
n×m
d . Under the

rational-DLWEn,m,d,q,χ assumption, Auxki is indistinguishable from the uniform
distribution, and the security of the scheme is now obvious.

However, under the semi-malicious adversary, {Aj}j∈[k]/i may not be uni-
form, and the conditional distributions si|{bi,j}j∈[k]/i and si may differ signifi-
cantly. In order to cover this “active leakage” model, we need to assume that the
average min-entropy H̃∞(si|{bi,j}j∈[k]/i) of si is sufficiently large. We have the
following result

Theorem 10. Let Ai ∈ q
dZ

n×m
d be uniform, and {Aj}j∈[k]/i be chosen by a

rushing adversary after seeing Ai. Let si ← Z
n
d , χ be a discrete Gaussian

distribution over q
dZ, ej ← χm, and {bi,j = siAj + ej}j∈[k]/i. Assuming

H̃∞(si|{bi,j}j∈[k]/i) ≥ n, and dual-Regev encryption is circular security with pub-
lic key (B, t), B ← q

dZ
n×r
d , t = siB mod q, r = n−ω(log n)

log d , then it holds that
(Ai, {bi,j}j∈[k]/i,C) and (Ai, {bi,j}j∈[k]/i,U), where C is the ciphertext of party
i, U ← q

dZ
(n+1)×(n+1)l
d , are (jointly) computational indistinguishable.

Proof. Let C =
(
C0

c1

)
=

(
Ai

bi,i

)
R +

(
0
e′

)
, for bi,i = siAi + e, it holds that

c1 = siAiR + eR + e′ = siC0 + eR + e′. By our parameter settings, we have
||eR/e′|| = negl(λ), thus(

Ai, {bi,j}j∈[k]/i,

(
C0

c1

))
≈s

(
Ai, {bi,j}j∈[k]/i,

(
C0

siC0 + e′

))
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Using the Leftover Hash Lemma with Ai as seed and R as source, we have
(Ai,C0) ≈s (Ai,Z), where Z ← q

dZ
n×(n+1)l
d , thus(

Ai, {bi,j}j∈[k]/i,

(
C0

siC0 + e′

))
≈s

(
Ai, {bi,j}j∈[k]/i,

(
Z

siZ+ e′

))

We note that Z is independent of si, as C0 is generated after si|{bi,j}. Assuming
H̃∞(si|{bi,j}j∈[k]/i) ≥ n, let r = n−ω(log n)

log d and dual-Regev encryption is circular
security. By the Theorem 11 in the full version [10], it holds that(

Ai, {bi,j}j∈[k]/i,

(
Z

siZ+ e′

))
≈c

(
Ai, {bi,j}j∈[k]/i,

(
Z
z

))

where z ← Z
(n+1)l
d , Thus (Ai, {bi,j}j∈[k]/i,C) and (Ai, {bi,j}j∈[k]/i,U), are

(jointly) computational indistinguishable.
�

Remark. Note that the premise of the above result is that H̃∞(si|
{bi,j}j∈[k]/i) ≥ n, where bi,j = siAj + ej . Assuming i = 1, we have

(b1,2,b1,3, · · · ,b1,k) = s1(A2,A3, · · · ,Ak) + (e2, e3, · · · , ek).

Let Ā = (A2,A3, · · · ,Ak), ē = (e2, e3, · · · , ek), by Theorem 9, if 0 < σ <
d

2
√

m(k−1)
we have

H̃∞(si|siĀ+ ē) ≥ − log(
1

ρσ(Λq(Ā))
+ 2−m(k−1)) (6)

Let γ > 0 be real, B be a sphere of radius 1, by the Lemma 4.3 in [4], if
rank(Λq(Ā)

⋂
γB) ≥ n

2 and σ > 4γ, it holds that ρσ(Λq(Ā)) > 2n+2 (satisfying
1

ρσ(Λq(Ā))
≤ 2−n − 2m(k−1), thus H̃∞(si|{bi,j}j∈[k]/i) ≥ n). We observe from [1]

that one way to satisfy rank(Λq(Ā)
⋂

γB) ≥ n
2 is to make Ā have structure as

Ā =
(

B2 B3 · · · Bk

SB2 +E2, SB3 +E3, · · · , SBk +Ek

)

where Bi ← q
dZ

n
2 ×m

d , S ← Z
n
2 × n

2
d , Ei ← χ̄

n
2 ×m, χ̄ is defined over q

dZ with
standard deviation σ̄ satisfying

√
m(k − 1) · σ̄ ≤ γ. Thus it holds that

(
I
S I

)−1

· Ā =
(
B2, B3, · · · , Bk

E2, E3, · · · , Ek

)
∈ Λq(Ā)

Thus, rank(Λq(Ā)
⋂

γB) ≥ n
2 . Let σ > 4γ, we have H̃∞(si|siĀ + ē) > n. Let

σ̄ > 2
√

n, by rational-DLWEn
2 ,m,d,q,χ̄ assumption, Ā looks random.
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Put Things Together. We bring together the previous parameter require-
ments, in particular, the range of standard deviations for several discrete Gaus-
sian distributions. By Theorem 9, for (6) holds, we need 0 < σ < d

2
√

m(k−1)
.

In order to make rank(Λq(Ā)
⋂

γB) > n
2 , H̃∞(s|sĀ + ē) > n, we need√

m(k − 1)σ̄ < γ, σ > 4γ, and σ̄ > 2
√

n to make Ā looks random. In The-
orem10, we require ||eR/e′||∞ = negl(λ). To sum up, we get the parameters of
χ̄ and χ respectively as follows

σ̄ > 2
√

n, 8
√

mn(k − 1) < σ <
d

2
√

m(k − 1)
(7)

and χ′ is a uniform distribution over [−2λσ, 2λσ].

5.3 Comparison

The main distinction between our optimized scheme and the scheme [6] is sim-
ilar to the difference between the GSW scheme and the Dual-GSW scheme.
Furthermore, the sizes of the key and ciphertext in their schemes are related
to k. Furthermore, we have a smaller key and ciphertext size and computation
compared to the scheme [14], noting that d = q/poly(λ). The computation com-
plexity of our scheme is proportional to k3. The communication complexity in
the setup phase is independent of k. The total communication amount should
be the ciphertext size multiplied by the input length of the circuit (Table 2).

Table 2. Complexity

Scheme Key size Ciphertext size Hom-multiplication Communication in setup Setup
[14] O(n2 log2 q) O(n2 log2 q) O(k3n3 log2 q) - CRS
[6] O(kn2 log2 q) O(k2n2 log4 q) O(k6n3 log5 q) O(kn2 log2 q) -

our scheme O(n2 log2 d) O(n2 log2 d) O(k3n3 log2 d) O(n2 log2 d) -
k, n, q denotes number of parties, LWE dimension, modulus respectively. d is defined in our scheme
with d = q/poly(λ). The key and ciphertext are counted in bits. The Hom-multiplication column
counts the number of multiplications on Zq required for a homomorphic multiplication. The Commu-
nication in setup column counts the communication traffic required for the interactive key generation
phase.
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Appendix

A The Proof of Theorem9

Proof. For a given A ∈ q
dZ

n×m
d and y ∈ q

dZ
m
d , let s∗ be the point that maximizes

the conditional probability Pr
s←Z

n
d

[s = s∗|y = sA+ e]. By Bayes Rule, it holds

that

Pr
s←Z

n
d

[s = s∗|y = sA+ e] = Pr [y = sA+ e | s∗] · Pr [s = s∗]
Pr[y = sA+ e]

=
Pr [e = y − s∗A]∑
s′ Pr [e = y − s′A]

For the given A and y,
∑

s′ Pr[e = y − s′A] is a constant, it holds that

Pr[s = s∗|y = sA+ e] ∝ Pr[e = y − s∗A].

Thus the point maximizes Pr[s = s∗|y = sA+ e] is the lattice point nearest to
y. Let V ∈ q

dZ
m be the discretized Voronoï cell of Λq(A), that is V consists of all

point in q
dZ

m that are closer to 0 than to any other point in Λ. By construction,
V is a system of coset representatives of q

dZ
m\Λq(A).

By Theorem 4, it holds that Pr[s = s∗|y = sA+ e] = Pr[e mod q ∈ V ].
By Theorem5, it holds that ||e|| ≤ q

d · σ · √
m < q/2 except with probability

2−m, thus Pr[e mod q ∈ V ] ≤ Pr[e ∈ V ] + 2−m. By the Lemma 3.1 in [4], it
holds that Pr[e ∈ V ] ≤ ρσ(V )

ρσ(
q
dZm) ≤ 1

ρσ(Λq(A)) , therefore, Pr[e mod q ∈ V ] ≤
1

ρσ(Λq(A)) + 2−m, thus

H̃∞(s | sA+ e) = − log
(
Ey

[
max
s∗ Pr

s,e
[s = s∗ | y = sA+ e]

])

≥ − log
(

1
ρσ (Λq(A))

+ 2−m

)

�

References

1. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Unbounded multi-party computation
from learning with errors. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 754–781. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6_26

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_35

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296, 625–635 (1993)

https://doi.org/10.1007/978-3-030-77886-6_26
https://doi.org/10.1007/978-3-030-77886-6_26
https://doi.org/10.1007/978-3-642-03356-8_35


Lattice-Based, More General Anti-leakage Model and Its Application 63

4. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

5. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_19

6. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

7. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019, pp. 395–412. Association for Computing Machinery,
New York (2019). https://doi.org/10.1145/3319535.3363207

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_1

9. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_31

10. Dai, X., Chen, J., Wu, W., Feng, Y.: Lattice-based, more general anti-leakage
model and its application in decentralization. Cryptology ePrint Archive, Paper
2023/699 (2023). https://eprint.iacr.org/2023/699

11. Dai, X., Wu, W., Feng, Y.: Key lifting: multi-key fully homomorphic encryption
in plain model without noise flooding. Cryptology ePrint Archive, Paper 2022/055
(2022). https://eprint.iacr.org/2022/055

12. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

13. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp.
1219–1234. Association for Computing Machinery, New York (2012). https://doi.
org/10.1145/2213977.2214086

14. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–
763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

15. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5_9

16. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324

17. Shafi, G., Yael, K., Chris, P., Vinod, V.: Robustness of the learning with errors
assumption. In: Gennaro, R., Robshaw, M. (eds.) Innovations in Computer Science,
pp. 230–240 (2010)

18. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, SFCS 1982, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-45724-2_19
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://eprint.iacr.org/2023/699
https://eprint.iacr.org/2022/055
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1145/1568318.1568324

	Lattice-Based, More General Anti-leakage Model and Its Application in Decentralization
	1 Introduction
	1.1 Motivation
	1.2 Our Results
	1.3 Related Works

	2 Preliminaries
	2.1 Notation
	2.2 Some Result on the Lattice
	2.3 Leakage Model
	2.4 Learning with Errors
	2.5 Road-Map

	3 Technical Overview
	4 Lattice-Based, More General Anti-leakage Model
	4.1 The Leakage-Resilient of LWE Samples with Discrete Gaussian Secrets
	4.2 The Leakage-Resilient of LWE Samples with Bounded Uniform Secrets and Noise
	4.3 Lattice over qdZm
	4.4 The Leakage-Resilient of LWE Samples with Bounded Uniform Secrets and Gaussian Noise

	5 Optimized Multi-key Fully Homomorphic Encryption Scheme
	5.1 An Improved ``GSW-Style'' MKFHE Based on ch3TCC:BraHalPol17
	5.2 Security Under Semi-malicious Adversary
	5.3 Comparison

	A The Proof of Theorem9
	References


